Telomere shortening accompanies increased cell cycle activity during serial transplantation of hematopoietic stem cells

被引:139
作者
Allsopp, RC [1 ]
Cheshier, S [1 ]
Weissman, IL [1 ]
机构
[1] Stanford Univ, Sch Med, Dept Pathol, Beckman Ctr, Stanford, CA 94305 USA
关键词
hematopoietic stem cell; telomere; cell cycle; transplantation; mouse;
D O I
10.1084/jem.193.8.917
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Reactivation of telomerase and maintenance of telomere length can lead to the prevention of replicative senescence in some human somatic cells grown in vitro. To investigate whether telomere shortening might also play a role in the limitation of hematopoietic stem cell (HSC) division capacity in vivo, we analyzed telomere length during serial transplantation of murine HSCs. Southern blot analysis of telomere length in donor bone marrow cells revealed extensive shortening (similar to7 kb) after just two rounds of HSC transplantation. The number of cycling HSCs increased after transplantation and remained elevated for at least 4 mo, while the frequency of HSCs in the bone marrow was completely regenerated by 2 mo after transplantation. Direct analysis of telomeres in HSCs by fluorescent in situ hybridization during serial transplantation also revealed a reduction in telomere size. Together, these data show that telomeres shorten during division of HSCs in vivo, and are consistent with the hypothesis that telomere shortening may limit the replicative capacity of HSCs.
引用
收藏
页码:917 / 924
页数:8
相关论文
共 43 条
[1]   TELOMERE SHORTENING IS ASSOCIATED WITH CELL-DIVISION IN-VITRO AND IN-VIVO [J].
ALLSOPP, RC ;
CHANG, E ;
KASHEFIAAZAM, M ;
ROGAEV, EI ;
PIATYSZEK, MA ;
SHAY, JW ;
HARLEY, CB .
EXPERIMENTAL CELL RESEARCH, 1995, 220 (01) :194-200
[2]   TELOMERE LENGTH PREDICTS REPLICATIVE CAPACITY OF HUMAN FIBROBLASTS [J].
ALLSOPP, RC ;
VAZIRI, H ;
PATTERSON, C ;
GOLDSTEIN, S ;
YOUNGLAI, EV ;
FUTCHER, AB ;
GREIDER, CW ;
HARLEY, CB .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (21) :10114-10118
[3]  
[Anonymous], 1995, Telomeres
[4]   Telomere shortening and tumor formation by mouse cells lacking telomerase RNA [J].
Blasco, MA ;
Lee, HW ;
Hande, MP ;
Samper, E ;
Lansdorp, PM ;
DePinho, RA ;
Greider, CW .
CELL, 1997, 91 (01) :25-34
[5]   Extension of life-span by introduction of telomerase into normal human cells [J].
Bodnar, AG ;
Ouellette, M ;
Frolkis, M ;
Holt, SE ;
Chiu, CP ;
Morin, GB ;
Harley, CB ;
Shay, JW ;
Lichtsteiner, S ;
Wright, WE .
SCIENCE, 1998, 279 (5349) :349-352
[6]   ELECTROPHORETIC SEPARATIONS OF LARGE DNA-MOLECULES BY PERIODIC INVERSION OF THE ELECTRIC-FIELD [J].
CARLE, GF ;
FRANK, M ;
OLSON, MV .
SCIENCE, 1986, 232 (4746) :65-68
[7]   In vivo proliferation and cell cycle kinetics of long-term self-renewing hematopoietic stem cells [J].
Cheshier, SP ;
Morrison, SJ ;
Liao, XS ;
Weissman, IL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (06) :3120-3125
[8]   TELOMERE SHORTENING ASSOCIATED WITH CHROMOSOME INSTABILITY IS ARRESTED IN IMMORTAL CELLS WHICH EXPRESS TELOMERASE ACTIVITY [J].
COUNTER, CM ;
AVILION, AA ;
LEFEUVRE, CE ;
STEWART, NG ;
GREIDER, CW ;
HARLEY, CB ;
BACCHETTI, S .
EMBO JOURNAL, 1992, 11 (05) :1921-1929
[9]   STRUCTURE AND VARIABILITY OF HUMAN-CHROMOSOME ENDS [J].
DELANGE, T ;
SHIUE, L ;
MYERS, RM ;
COX, DR ;
NAYLOR, SL ;
KILLERY, AM ;
VARMUS, HE .
MOLECULAR AND CELLULAR BIOLOGY, 1990, 10 (02) :518-527
[10]   CELLULAR AND MOLECULAR MECHANISMS OF AGING [J].
DICE, JF .
PHYSIOLOGICAL REVIEWS, 1993, 73 (01) :149-159