Feedback control of the protein kinase TAK1 by SAPK2a/p38α

被引:239
作者
Cheung, PCF
Campbell, DG
Nebreda, AR
Cohen, P
机构
[1] Univ Dundee, Sch Life Sci, MRC, Prot Phosphorylat Unit, Dundee DD1 5EH, Scotland
[2] European Mol Biol Lab, Heidelberg, Germany
关键词
p38; SB; 203580; stress-activated protein kinase; TAB1; TAK1;
D O I
10.1093/emboj/cdg552
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
TAB1, a subunit of the kinase TAK1, was phosphorylated by SAPK2a/p38alpha at Ser423, Thr431 and Ser438 in vitro. TAB1 became phosphorylated at all three sites when cells were exposed to cellular stresses, or stimulated with tumour necrosis factor-alpha (TNF-alpha), interleukin-1 (IL-1) or lipopolysaccharide (LPS). The phosphorylation of Ser423 and Thr431 was prevented if cells were pre-incubated with SB 203580, while the phosphorylation of Ser438 was partially inhibited by PD 184352. Ser423 is the first residue phosphorylated by SAPK2a/p38alpha that is not followed by proline. The activation of TAK1 was enhanced by SB 203580 in LPS-stimulated macrophages, and by proinflammatory cytokines or osmotic shock in epithelial KB cells or embryonic fibroblasts. The activation of TAK1 by TNF-alpha, IL-1 or osmotic shock was also enhanced in embryonic fibroblasts from SAPK2a/p38alpha-deficient mice, while incubation of these cells with SB 203580 had no effect. Our results suggest that TAB1 participates in a SAPK2a/p38alpha-mediated feedback control of TAK1, which not only limits the activation of SAPK2a/p38alpha but synchronizes its activity with other signalling pathways that lie downstream of TAK1 (JNK and IKK).
引用
收藏
页码:5793 / 5805
页数:13
相关论文
共 34 条
[1]   Essential role of p38α MAP kinase in placental but not embryonic cardiovascular development [J].
Adams, RH ;
Porras, A ;
Alonso, G ;
Jones, M ;
Vintersten, K ;
Panelli, S ;
Valladares, A ;
Perez, L ;
Klein, R ;
Nebreda, AR .
MOLECULAR CELL, 2000, 6 (01) :109-116
[2]  
ALESSI DR, 1993, ONCOGENE, V8, P2015
[3]  
ALESSI DR, 1995, METHOD ENZYMOL, V255, P279
[4]   Differential activation of p38 mitogen-activated protein kinase isoforms depending on signal strength [J].
Alonso, G ;
Ambrosino, C ;
Jones, M ;
Nebreda, AR .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (51) :40641-40648
[5]   Negative feedback regulation of MKK6 mRNA stability by p38α mitogen-activated protein kinase [J].
Ambrosino, C ;
Mace, G ;
Galban, S ;
Fritsch, C ;
Vintersten, K ;
Black, E ;
Gorospe, M ;
Nebreda, AR .
MOLECULAR AND CELLULAR BIOLOGY, 2003, 23 (01) :370-381
[6]   A 3-phosphoinositide-dependent protein kinase-1 (PDK1) docking site is required for the phosphorylation of protein kinase Cζ (PKCζ) and PKC-related kinase 2 by PDK1 [J].
Balendran, A ;
Biondi, RM ;
Cheung, PCF ;
Casamayor, A ;
Deak, M ;
Alessi, DR .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (27) :20806-20813
[7]   Mechanism of p38 MAP kinase activation in vivo [J].
Brancho, D ;
Tanaka, N ;
Jaeschke, A ;
Ventura, JJ ;
Kelkar, N ;
Tanaka, Y ;
Kyuuma, M ;
Takeshita, T ;
Flavell, RA ;
Davis, RJ .
GENES & DEVELOPMENT, 2003, 17 (16) :1969-1978
[8]   Initiation of a G2/M checkpoint after ultraviolet radiation requires p38 kinase [J].
Bulavin, DV ;
Higashimoto, Y ;
Popoff, IJ ;
Gaarde, WA ;
Basrur, V ;
Potapova, O ;
Appella, E ;
Fornace, AJ .
NATURE, 2001, 411 (6833) :102-107
[9]  
CHEN CA, 1988, BIOTECHNIQUES, V6, P632
[10]   Stimulus-specific requirements for MAP3 kinases in activating the JNK pathway [J].
Chen, W ;
White, MA ;
Cobb, MH .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (51) :49105-49110