Decoding by linear programming

被引:5153
作者
Candes, EJ [1 ]
Tao, T
机构
[1] CALTECH, Dept Appl & Computat Math, Pasadena, CA 91125 USA
[2] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
基金
美国国家科学基金会;
关键词
basis pursuit; decoding of (random) linear codes; duality in optimization; Gaussian random matrices; l(1) minimization; linear codes; linear programming; principal angles; restricted orthonormality; singular values of random matrices; sparse solutions to underdetermined systems;
D O I
10.1109/TIT.2005.858979
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper considers a natural error correcting problem with real valued input/output. We wish to recover an input vector f is an element of R-n from corrupted measurements y = Af + e. Here, A is an m by n (coding) matrix and e is an arbitrary and unknown vector of errors. Is it possible to recover f exactly from the data y?
引用
收藏
页码:4203 / 4215
页数:13
相关论文
共 28 条
[1]  
[Anonymous], 2001, MATH SURVEYS MONOGRA
[2]  
[Anonymous], 1979, Computers and Intractablity: A Guide to the Theoryof NP-Completeness
[3]  
[Anonymous], 2003, THESIS MIT CAMBRIDGE
[4]   LIMIT OF THE SMALLEST EIGENVALUE OF A LARGE DIMENSIONAL SAMPLE COVARIANCE-MATRIX [J].
BAI, ZD ;
YIN, YQ .
ANNALS OF PROBABILITY, 1993, 21 (03) :1275-1294
[5]  
BLOOMFIELD P, 1983, LEAST ABSOLUTE DEVAL
[6]  
Boyd S., 2004, CONVEX OPTIMIZATION
[7]  
CANDES EJ, UNPUB IEEE T INF THE
[8]  
CANDES EJ, IN PRESS FOUND COMPU
[9]   Atomic decomposition by basis pursuit [J].
Chen, SSB ;
Donoho, DL ;
Saunders, MA .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 20 (01) :33-61
[10]   Noiselets [J].
Coifman, R ;
Geshwind, F ;
Meyer, Y .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2001, 10 (01) :27-44