Inflammatory neurodegeneration mediated by nitric oxide, glutamate, and mitochondria

被引:391
作者
Brown, GC [1 ]
Bal-Price, A [1 ]
机构
[1] Univ Cambridge, Dept Biochem, Cambridge CB2 1QW, England
关键词
inflammation; neurons; microglia; astrocytes; nitric oxide; brain; excitotoxicity; cell death; Alzheimer's disease;
D O I
10.1385/MN:27:3:325
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
In inflammatory, infectious, ischemic, and neurodegenerative pathologies of the central nervous system (CNS) glia become "activated" by inflammatory mediators, and express new proteins such as the inducible isoform of nitric oxide synthase (iNOS). Although these activated glia have beneficial roles, in vitro they potently kill cocultured neurons, and there is increasing evidence that they contribute to pathology in vivo. Nitric oxide (NO) from iNOS appears to be a key mediator of such glial-induced neuronal death. The high sensitivity of neurons to NO is partly due to NO causing inhibition of respiration, rapid glutamate release from both astrocytes and neurons, and subsequent excitotoxic death of the neurons. NO is a potent inhibitor of mitochondrial respiration, due to reversible binding of NO to cytochrome oxidase in competition with oxygen, resulting in inhibition of energy production and sensitization to hypoxia. Activated astrocytes or microglia cause a potent inhibition of respiration in cocultured neurons due to glial NO inhibiting cytochrome oxidase within the neurons, resulting in ATP depletion and glutamate release. In some conditions, glutamate-induced neuronal death can itself be mediated by N-methyl-D-aspartate (NMDA)-receptor activation of the neuronal isoform of NO synthase (nNOS) causing mitochondrial damage. In addition NO can be converted to a number of reactive derivatives such as peroxynitrite, NO2, N2O3, and S-nitrosothiols that can kill cells in part by inhibiting mitochondrial respiration or activation of mitochondrial permeability transition, triggering neuronal apoptosis or necrosis.
引用
收藏
页码:325 / 355
页数:31
相关论文
共 279 条
[1]  
Acarin L, 2001, Prog Brain Res, V132, P375
[2]   Immunologic NO synthase: Elevation in severe AIDS dementia and induction by HIV-1 gp41 [J].
Adamson, DC ;
Wildemann, B ;
Sasaki, M ;
Glass, JD ;
McArthur, JC ;
Christov, VI ;
Dawson, TM ;
Dawson, VL .
SCIENCE, 1996, 274 (5294) :1917-1921
[3]   Acyl phosphatase activity of NO-inhibited glyceraldehyde-3-phosphate dehydrogenase (GAPDH): a potential mechanism for uncoupling glycolysis from ATP generation in NO-producing cells [J].
Albina, JE ;
Mastrofrancesco, B ;
Reichner, JS .
BIOCHEMICAL JOURNAL, 1999, 341 :5-9
[4]   Neuroprotection and P4502C11 upregulation after experimental transient ischemic attack [J].
Alkayed, NJ ;
Goyagi, T ;
Joh, HD ;
Klaus, J ;
Harder, DR ;
Traystman, RJ ;
Hurn, PD .
STROKE, 2002, 33 (06) :1677-1684
[5]   Cytokines and acute neurodegeneration [J].
Allan, SM ;
Rothwell, NJ .
NATURE REVIEWS NEUROSCIENCE, 2001, 2 (10) :734-744
[6]   Glutamate neurotoxicity is associated with nitric oxide-mediated mitochondrial dysfunction and glutathione depletion [J].
Almeida, A ;
Heales, SJR ;
Bolaños, JP ;
Medina, JM .
BRAIN RESEARCH, 1998, 790 (1-2) :209-216
[7]   Different responses of astrocytes and neurons to nitric oxide:: The role of glycolytically generated ATP in astrocyte protection [J].
Almeida, A ;
Almeida, J ;
Bolaños, JP ;
Moncada, S .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (26) :15294-15299
[8]   A transient inhibition of mitochondrial ATP synthesis by nitric oxide synthase activation triggered apoptosis in primary cortical neurons [J].
Almeida, A ;
Bolaños, JP .
JOURNAL OF NEUROCHEMISTRY, 2001, 77 (02) :676-690
[9]   Inducible nitric oxide synthase up-regulation in a transgenic mouse model of familial amyotrophic lateral sclerosis [J].
Almer, G ;
Vukosavic, S ;
Romero, N ;
Przedborski, S .
JOURNAL OF NEUROCHEMISTRY, 1999, 72 (06) :2415-2425
[10]   Activation of the inducible form of nitric oxide synthase in the brains of patients with multiple sclerosis [J].
Bagasra, O ;
Michaels, FH ;
Zheng, YM ;
Bobroski, LE ;
Spitsin, SV ;
Fu, ZF ;
Tawadros, R ;
Koprowski, H .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (26) :12041-12045