SKN-1 links C-elegans mesendodermal specification to a conserved oxidative stress response

被引:584
作者
An, JH
Blackwell, TK [1 ]
机构
[1] Harvard Univ, Sch Med, Ctr Blood Res, Boston, MA 02115 USA
[2] Harvard Univ, Sch Med, Dept Pathol, Boston, MA 02115 USA
关键词
oxidative stress; C; elegans; SKN-1; mesendoderm; intestine; lifespan;
D O I
10.1101/gad.1107803
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
During the earliest stages of Caenorhabditis elegans embryogenesis, the transcription factor SKN-1 initiates development of the digestive system and other mesendodermal tissues. Postembryonic SKN-1 functions have not been elucidated. SKN-1 binds to DNA through a unique mechanism, but is distantly related to basic leucine-zipper proteins that orchestrate the major oxidative stress response in vertebrates and yeast. Here we show that despite its distinct mode of target gene recognition, SKN-1 functions similarly to resist oxidative stress in C. elegans. During postembryonic stages, SKN-1 regulates a key Phase II detoxification gene through constitutive and stress-inducible mechanisms in the ASI chemosensory neurons and intestine, respectively. SKN-1 is present in ASI nuclei under normal conditions, and accumulates in intestinal nuclei in response to oxidative stress. skn-1 mutants are sensitive to oxidative stress and have shortened lifespans. SKN-1 represents a connection between developmental specification of the digestive system and one of its most basic functions, resistance to oxidative and xenobiotic stress. This oxidative stress response thus appears to be both widely conserved and ancient, suggesting that the mesendodermal specification role of SKN-1 was predated by its function in these detoxification mechanisms.
引用
收藏
页码:1882 / 1893
页数:12
相关论文
共 59 条
[1]   FORMATION OF A MONOMERIC DNA-BINDING DOMAIN BY SKN-1 BZIP AND HOMEODOMAIN ELEMENTS [J].
BLACKWELL, TK ;
BOWERMAN, B ;
PRIESS, JR ;
WEINTRAUB, H .
SCIENCE, 1994, 266 (5185) :621-628
[2]   Extended longevity in mice lacking the insulin receptor in adipose tissue [J].
Blüher, M ;
Kahn, BB ;
Kahn, CR .
SCIENCE, 2003, 299 (5606) :572-574
[3]   SKN-1, A MATERNALLY EXPRESSED GENE REQUIRED TO SPECIFY THE FATE OF VENTRAL BLASTOMERES IN THE EARLY C-ELEGANS EMBRYO [J].
BOWERMAN, B ;
EATON, BA ;
PRIESS, JR .
CELL, 1992, 68 (06) :1061-1075
[4]   THE MATERNAL GENE SKN-1 ENCODES A PROTEIN THAT IS DISTRIBUTED UNEQUALLY IN EARLY C-ELEGANS EMBRYOS [J].
BOWERMAN, B ;
DRAPER, BW ;
MELLO, CC ;
PRIESS, JR .
CELL, 1993, 74 (03) :443-452
[5]  
BRENNER S, 1974, GENETICS, V77, P71
[6]   SKN-1 domain folding and basic region monomer stabilization upon DNA binding [J].
Carroll, AS ;
Gilbert, DE ;
Liu, XY ;
Cheung, JW ;
Michnowicz, JE ;
Wagner, G ;
Ellenberger, TE ;
Blackwell, TK .
GENES & DEVELOPMENT, 1997, 11 (17) :2227-2238
[7]   Targeted disruption of the ubiquitous CNC-bZIP transcription factor, Nrf-1, results in anemia and embryonic lethality in mice [J].
Chan, JY ;
Kwong, M ;
Lu, RH ;
Chang, J ;
Wang, B ;
Yen, TSB ;
Kan, YW .
EMBO JOURNAL, 1998, 17 (06) :1779-1787
[8]   Nrf2 is essential for protection against acute pulmonary injury in mice [J].
Chan, KM ;
Kan, YW .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (22) :12731-12736
[9]   An important function of Nrf2 in combating oxidative stress: Detoxification of acetaminophen [J].
Chan, KM ;
Han, XD ;
Kan, YW .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (08) :4611-4616
[10]   Extension of life-span by loss of CHICO, a Drosophila insulin receptor substrate protein [J].
Clancy, DJ ;
Gems, D ;
Harshman, LG ;
Oldham, S ;
Stocker, H ;
Hafen, E ;
Leevers, SJ ;
Partridge, L .
SCIENCE, 2001, 292 (5514) :104-106