The disease progression mutant mice is affected of Mecp2 by the level of BDNF expression

被引:447
作者
Chang, QA
Khare, G
Dani, V
Nelson, S
Jaenisch, R
机构
[1] Whitehead Inst Biomed Res, Cambridge, MA 02142 USA
[2] MIT, Dept Biol, Cambridge, MA 02142 USA
[3] Brandeis Univ, Dept Biol, Waltham, MA 02454 USA
[4] Brandeis Univ, Volen Ctr Complex Syst, Waltham, MA 02454 USA
关键词
D O I
10.1016/j.neuron.2005.12.027
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Mutations in the MECP2 gene cause Rett syndrome (RTT). Bdnf is a MeCP2 target gene; however, its role in RTT pathogenesis is unknown. We examined Bdnf conditional mutant mice for RTT-relevant pathologies and observed that loss of BDNF caused smaller brain size, smaller CA2 neurons, smaller glomerulus size, and a characteristic hindlimb-clasping phenotype. BDNF protein level was reduced in Mecp2 mutant mice, and deletion of Bdnf in Mecp2 mutants caused an earlier onset of RTT-like symptoms. To assess whether this interaction was functional and potentially therapeutically relevant, we increased BDNF expression in the Mecp2 mutant brain with a conditional Bdnf transgene. BDNF overexpression extended the lifespan, rescued a locomotor defect, and reversed an electrophysiological deficit observed in Mecp2 mutants. Our results provide in vivo evidence for a functional interaction between Mecp2and Bdnf and demonstrate the physiological significance of altered BDNF expression/signaling in RTT disease progression.
引用
收藏
页码:341 / 348
页数:8
相关论文
共 38 条
[1]   Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2 [J].
Amir, RE ;
Van den Veyver, IB ;
Wan, M ;
Tran, CQ ;
Francke, U ;
Zoghbi, HY .
NATURE GENETICS, 1999, 23 (02) :185-188
[2]   BDNF in schizophrenia, depression and corresponding animal models [J].
Angelucci, F ;
Brenè, S ;
Mathé, AA .
MOLECULAR PSYCHIATRY, 2005, 10 (04) :345-352
[3]  
BEARD C, 2005, IN PRESS GENESIS
[4]   Methylation-induced repression - Belts, braces, and chromatin [J].
Bird, AP ;
Wolffe, AP .
CELL, 1999, 99 (05) :451-454
[5]   Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and -independent mechanisms [J].
Bonni, A ;
Brunet, A ;
West, AE ;
Datta, SR ;
Takasu, MA ;
Greenberg, ME .
SCIENCE, 1999, 286 (5443) :1358-1362
[6]   Brain-derived neurotrophic factor regulates the onset and severity of motor dysfunction associated with enkephalinergic neuronal degeneration in Huntington's disease [J].
Canals, JM ;
Pineda, JR ;
Torres-Peraza, JF ;
Bosch, M ;
Martín-Ibañez, R ;
Muñoz, MT ;
Mengod, G ;
Ernfors, P ;
Alberch, J .
JOURNAL OF NEUROSCIENCE, 2004, 24 (35) :7727-7739
[7]   Increased GABAergic function in mouse models of Huntington's disease:: Reversal by BDNF [J].
Cepeda, C ;
Starling, AJ ;
Wu, NP ;
Nguyen, OK ;
Uzgil, B ;
Soda, T ;
André, VM ;
Ariano, MA ;
Levine, MS .
JOURNAL OF NEUROSCIENCE RESEARCH, 2004, 78 (06) :855-867
[8]   Deficiency of methyl-CpG binding protein-2 in CNS neurons results in a Rett-like phenotype in mice [J].
Chen, RZ ;
Akbarian, S ;
Tudor, M ;
Jaenisch, R .
NATURE GENETICS, 2001, 27 (03) :327-331
[9]   Derepression of BDNF transcription involves calcium-dependent phosphorylation of MeCP2 [J].
Chen, WG ;
Chang, Q ;
Lin, YX ;
Meissner, A ;
West, AE ;
Griffith, EC ;
Jaenisch, R ;
Greenberg, ME .
SCIENCE, 2003, 302 (5646) :885-889
[10]   Reduced cortical activity due to a shift in the balance between excitation and inhibition in a mouse model of Rett Syndrome [J].
Dani, VS ;
Chang, Q ;
Maffei, A ;
Turrigiano, GG ;
Jaenisch, R ;
Nelson, SB .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (35) :12560-12565