Robust solutions of uncertain quadratic and conic-quadratic problems

被引:120
作者
Ben-Tal, A [1 ]
Nemirovski, A
Roos, C
机构
[1] Technion Israel Inst Technol, Fac Ind Engn & Management, IL-32000 Haifa, Israel
[2] Delft Univ Technol, Fac Informat Technol & Syst, NL-2600 GA Delft, Netherlands
关键词
semidefinite relaxation of NP-hard problems; (conic) quadratic programming; robust optimization;
D O I
10.1137/S1052623401392354
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a conic-quadratic (and in particular a quadratically constrained) optimization problem with uncertain data, known only to reside in some uncertainty set U. The robust counterpart of such a problem leads usually to an NP-hard semidefinite problem; this is the case, for example, when U is given as the intersection of ellipsoids or as an n-dimensional box. For these cases we build a single, explicit semidefinite program, which approximates the NP-hard robust counterpart, and we derive an estimate on the quality of the approximation, which is essentially independent of the dimensions of the underlying conic-quadratic problem.
引用
收藏
页码:535 / 560
页数:26
相关论文
共 7 条
[1]   Robust convex optimization [J].
Ben-Tal, A ;
Nemirovski, A .
MATHEMATICS OF OPERATIONS RESEARCH, 1998, 23 (04) :769-805
[2]   Robust truss topology design via semidefinite programming [J].
Ben-Tal, A ;
Nemirovski, A .
SIAM JOURNAL ON OPTIMIZATION, 1997, 7 (04) :991-1016
[3]   Robust solutions of uncertain linear programs [J].
Ben-Tal, A ;
Nemirovski, A .
OPERATIONS RESEARCH LETTERS, 1999, 25 (01) :1-13
[4]  
BENTAL A, 2001, MPS SIAM SER OPTIM M
[5]  
Boyd S., 1994, SIAM STUD APPL MATH, V15
[6]  
GHAOUI LE, 1997, SIAM J MATRIX ANAL A, V18, P1035, DOI DOI 10.1137/S0895479896298130
[7]  
HASTAD J, 1997, P 29 ANN ACM S THEOR, P1