Spindle oscillation in cats: The role of corticothalamic feedback in a thalamically generated rhythm

被引:223
作者
Contreras, D [1 ]
Steriade, M [1 ]
机构
[1] UNIV LAVAL,FAC MED,NEUROPHYSIOL LAB,LAVAL,PQ,CANADA
来源
JOURNAL OF PHYSIOLOGY-LONDON | 1996年 / 490卷 / 01期
关键词
D O I
10.1113/jphysiol.1996.sp021133
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
1. Spindles represent an oscillatory activity (7-14 Hz) of the electroencephalogram (EEG) originating in the thalamus and appearing during early stages of sleep. We investigated: (i) the phase relations between thalamic and cortical neurons during this rhythm; (ii) the patterns of spindles under different anaesthetics and their modifications at various levels of the membrane potential (V-m); and (iii) the potentiating role of the corticothalamic feedback in the genesis of spindles. Intra- and extracellular recordings were performed in cats from reticular and dorsal thalamic nuclei, as well as from various cortical areas. 2. In thalamic reticular neurons, spindles were sequences of waves at 7-14 Hz, riding on a prolonged depolarizing plateau and occurring in phase with depth-negative cortical EEG waves. In thalamocortical cells, spindles consisted of inhibitory postsynaptic potentials (IPSPs) in phase with depth-positive cortical EEG; waves and occasionally leading to rebound spike bursts. In cortical cells, spindle waves were rhythmic (7-14 Hz) excitatory postsynaptic potentials (EPSPs) that sometimes gave rise to action potentials. Spindles occurred in phase among thalamic reticular, thalamocortical and neocortical neurons. 3. In thalamic reticular neurons, spindle waves and their depolarizing plateaux increased in amplitude with slight cellular hyperpolarization, but at a V-m more negative than -80 or -85 mV they decreased in amplitude. No frequency alterations were observed with these V-m changes. 4. The waxing-and-waning pattern of spontaneous spindles under barbiturate anaesthesia was distinct from the waning pattern under ketamine-xylazine anaesthesia. Under all anaesthetics, spindles had a waning pattern when elicited by cortical stimuli. The amplitude of cortical-evoked spindle waves diminished with the decrease in stimulation intensity. 5. Under urethane or ketamine-xylazine anaesthesia, spindle sequences were grouped by a cortically generated slow oscillation (< 1 Hz) and were preceded by a depth-positive EEG wave that corresponded to a prolonged hyperpolarization in all three investigated (cortical, thalamic reticular, and thalamocortical) cellular types. 6. We propose that the waxing pattern of spindle oscillation is due to a progressive entrainment of units into the oscillation until a maximum number is reached, depending on the background activity in the network. The phase relations between cortical, thalamic reticular and thalamocortical neurons are ascribed to distributed excitatory signals from thalamocortical neurons to both cortical and reticular neurons at each cycle of the oscillation. In turn, cortical neurons provide a powerful drive to potentiate the genesis of thalamic spindles.
引用
收藏
页码:159 / 179
页数:21
相关论文
共 39 条
[1]   SHORT-RANGE AND LONG-RANGE NEURONAL SYNCHRONIZATION OF THE SLOW (LESS-THAN-1-HZ) CORTICAL OSCILLATION [J].
AMZICA, F ;
STERIADE, M .
JOURNAL OF NEUROPHYSIOLOGY, 1995, 73 (01) :20-38
[2]  
[Anonymous], PHYSL BASIS ALPHA RH
[3]   INTRINSIC-PROPERTIES OF NUCLEUS RETICULARIS THALAMI NEURONS OF THE RAT STUDIED INVITRO [J].
AVANZINI, G ;
DECURTIS, M ;
PANZICA, F ;
SPREAFICO, R .
JOURNAL OF PHYSIOLOGY-LONDON, 1989, 416 :111-122
[4]   AN ANALYSIS OF PENICILLIN-INDUCED GENERALIZED SPIKE AND WAVE DISCHARGES USING SIMULTANEOUS RECORDINGS OF CORTICAL AND THALAMIC SINGLE NEURONS [J].
AVOLI, M ;
GLOOR, P ;
KOSTOPOULOS, G ;
GOTMAN, J .
JOURNAL OF NEUROPHYSIOLOGY, 1983, 50 (04) :819-837
[5]   MECHANISMS OF OSCILLATORY ACTIVITY IN GUINEA-PIG NUCLEUS-RETICULARIS THALAMI IN-VITRO - A MAMMALIAN PACEMAKER [J].
BAL, T ;
MCCORMICK, DA .
JOURNAL OF PHYSIOLOGY-LONDON, 1993, 468 :669-691
[6]   SYNAPTIC AND MEMBRANE MECHANISMS UNDERLYING SYNCHRONIZED OSCILLATIONS IN THE FERRET LATERAL GENICULATE-NUCLEUS IN-VITRO [J].
BAL, T ;
VONKROSIGK, M ;
MCCORMICK, DA .
JOURNAL OF PHYSIOLOGY-LONDON, 1995, 483 (03) :641-663
[7]   ROLE OF THE FERRET PERIGENICULATE NUCLEUS IN THE GENERATION OF SYNCHRONIZED OSCILLATIONS IN-VITRO [J].
BAL, T ;
VONKROSIGK, M ;
MCCORMICK, DA .
JOURNAL OF PHYSIOLOGY-LONDON, 1995, 483 (03) :665-685
[8]   A RETICULORETICULAR COMMISSURAL PATHWAY IN THE RAT THALAMUS [J].
BATTAGLIA, G ;
LIZIER, C ;
COLACITTI, C ;
PRINCIVALLE, A ;
SPREAFICO, R .
JOURNAL OF COMPARATIVE NEUROLOGY, 1994, 347 (01) :127-138
[9]   2 INHIBITORY POSTSYNAPTIC POTENTIALS, AND GABAA AND GABAB RECEPTOR-MEDIATED RESPONSES IN NEOCORTEX OF RAT AND CAT [J].
CONNORS, BW ;
MALENKA, RC ;
SILVA, LR .
JOURNAL OF PHYSIOLOGY-LONDON, 1988, 406 :443-468
[10]   ELECTROPHYSIOLOGICAL PROPERTIES OF CAT RETICULAR THALAMIC NEURONS IN-VIVO [J].
CONTRERAS, D ;
DOSSI, RC ;
STERIADE, M .
JOURNAL OF PHYSIOLOGY-LONDON, 1993, 470 :273-294