Mammalian DNA double-strand break repair protein XRCC4 interacts with DNA ligase IV

被引:393
作者
Critchlow, SE
Bowater, RP
Jackson, SP
机构
[1] WELLCOME CRC INST,CAMBRIDGE CB2 1QR,ENGLAND
[2] UNIV CAMBRIDGE,DEPT ZOOL,CAMBRIDGE CB2 3EJ,ENGLAND
[3] IMPERIAL CANC RES FUND,CLARE HALL LABS,S MIMMS EN6 3LD,HERTS,ENGLAND
关键词
D O I
10.1016/S0960-9822(06)00258-2
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Background: Mammalian cells deficient in the XRCC4 DNA repair protein are impaired in DNA double-strand break repair and are consequently hypersensitive to ionising radiation, These cells are also defective in site-specific V(D)J recombination, a process that generates the diversity of antigen receptor genes in the developing immune system, These features are shared by cells lacking components of the DNA-dependent protein kinase (DNA-PK), Although the XRCC4 gene has been cloned, the function(s) of XRCC4 in DNA end-joining has remained elusive, Results: We found that XRCC4 is a nuclear phosphoprotein and was an effective substrate in vitro for DNA-PK. Human XRCC4 associated extremely tightly with another protein(s) even in the presence of 1 M NaCl. Coimmunoprecipitation and adenylylation assays demonstrated that this associated factor was the recently identified human DNA ligase IV. Consistent with this, XRCC4 and DNA ligase IV copurified exclusively and virtually quantitatively over a variety of chromatographic steps. Protein mapping studies revealed that XRCC4 interacted with ligase IV via the unique carboxy-terminal ligase IV extension that comprises two tandem BRCT (BRCA1 carboxyl terminus) homology motifs, which are also found in other DNA repair-associated factors and in the breast cancer susceptibility protein BRCA1. Conclusions: Our findings provide a function for the carboxy-terminal region of ligase IV and suggest that BRCT domains of other proteins may mediate contacts between DNA repair components, In addition, our data implicate mammalian ligase IV in V(D)J recombination and the repair of radiation-induced DNA damage, and provide a model for the potentiation of these processes by XRCC4.
引用
收藏
页码:588 / 598
页数:11
相关论文
共 49 条
[1]  
[Anonymous], 1988, Antibodies: A Laboratory Manual
[2]   MUTATIONS IN THE DNA LIGASE-I GENE OF AN INDIVIDUAL WITH IMMUNODEFICIENCIES AND CELLULAR-HYPERSENSITIVITY TO DNA-DAMAGING AGENTS [J].
BARNES, DE ;
TOMKINSON, AE ;
LEHMANN, AR ;
WEBSTER, ADB ;
LINDAHL, T .
CELL, 1992, 69 (03) :495-503
[3]   DEFECTIVE DNA-DEPENDENT PROTEIN-KINASE ACTIVITY IS LINKED TO V(D)J RECOMBINATION AND DNA-REPAIR DEFECTS ASSOCIATED WITH THE MURINE SCID MUTATION [J].
BLUNT, T ;
FINNIE, NJ ;
TACCIOLI, GE ;
SMITH, GCM ;
DEMENGEOT, J ;
GOTTLIEB, TM ;
MIZUTA, R ;
VARGHESE, AJ ;
ALT, FW ;
JEGGO, PA ;
JACKSON, SP .
CELL, 1995, 80 (05) :813-823
[4]   COMPLEMENTATION OF THE IONIZING-RADIATION SENSITIVITY, DNA END BINDING, AND V(D)J RECOMBINATION DEFECTS OF DOUBLE-STRAND BREAK REPAIR MUTANTS BY THE P86 KU AUTOANTIGEN [J].
BOUBNOV, NV ;
HALL, KT ;
WILLS, Z ;
LEE, SE ;
HE, DM ;
BENJAMIN, DM ;
PULASKI, CR ;
BAND, H ;
REEVES, W ;
HENDRICKSON, EA ;
WEAVER, DT .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (03) :890-894
[5]   Identification of a Saccharomyces cerevisiae Ku80 homologue: Roles in DNA double strand break rejoining and in telomeric maintenance [J].
Boulton, SJ ;
Jackson, SP .
NUCLEIC ACIDS RESEARCH, 1996, 24 (23) :4639-4648
[6]   Saccharomyces cerevisiae Ku70 potentiates illegitimate DNA double-strand break repair and serves as a barrier to error-prone DNA repair pathways [J].
Boulton, SJ ;
Jackson, SP .
EMBO JOURNAL, 1996, 15 (18) :5093-5103
[7]   XRCC1 polypeptide interacts with DNA polymerase beta and possibly poly(ADP-ribose) polymerase, and DNA ligase III is a novel molecular 'nick-sensor' in vitro [J].
Caldecott, KW ;
Aoufouchi, S ;
Johnson, P ;
Shall, S .
NUCLEIC ACIDS RESEARCH, 1996, 24 (22) :4387-4394
[8]   AN INTERACTION BETWEEN THE MAMMALIAN DNA-REPAIR PROTEIN XRCC1 AND DNA LIGASE-III [J].
CALDECOTT, KW ;
MCKEOWN, CK ;
TUCKER, JD ;
LJUNGQUIST, S ;
THOMPSON, LH .
MOLECULAR AND CELLULAR BIOLOGY, 1994, 14 (01) :68-76
[9]   From BRCA1 to RAP1: A widespread BRCT module closely associated with DNA repair [J].
Callebaut, I ;
Mornon, JP .
FEBS LETTERS, 1997, 400 (01) :25-30
[10]  
CHEN JW, 1995, MOL CELL BIOL, V15, P5412