Width of percolation transition in complex networks

被引:19
作者
Kalisky, T [1 ]
Cohen, R
机构
[1] Bar Ilan Univ, Minerva Ctr, IL-52900 Ramat Gan, Israel
[2] Bar Ilan Univ, Dept Phys, IL-52900 Ramat Gan, Israel
[3] Weizmann Inst Sci, Dept Comp Sci & Appl Math, IL-76100 Rehovot, Israel
关键词
D O I
10.1103/PhysRevE.73.035101
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
It is known that the critical probability for the percolation transition is not a sharp threshold. Actually it is a region of nonzero width Delta p(c) for systems of finite size. Here we present evidence that for complex networks Delta p(c)similar to p(c)/center dot, where center dot similar to N-opt(nu) is the average length of the percolation cluster, and N is the number of nodes in the network. For Erdos-Renyi graphs nu(opt)=1/3, while for scale-free networks with a degree distribution P(k)similar to k(-lambda) and 3 <lambda < 4, nu(opt)=(lambda-3)/(lambda-1). We show analytically and numerically that the survivability S(p,center dot), which is the probability of a cluster to survive center dot chemical shells at probability p, behaves near criticality as S(p,center dot)=S(p(c),center dot)exp[(p-p(c))center dot/p(c)]. Thus for probabilities inside the region parallel to p-p(c)parallel to < p(c)/center dot the behavior of the system is indistinguishable from that of the critical point.
引用
收藏
页数:4
相关论文
共 21 条
[1]   Statistical mechanics of complex networks [J].
Albert, R ;
Barabási, AL .
REVIEWS OF MODERN PHYSICS, 2002, 74 (01) :47-97
[2]  
Barabasi A.L., 2002, The formula: the universal laws of success
[3]  
Bollobas B., 2001, Random Graphs, V21
[4]   Optimal paths in disordered complex networks [J].
Braunstein, LA ;
Buldyrev, SV ;
Cohen, R ;
Havlin, S ;
Stanley, HE .
PHYSICAL REVIEW LETTERS, 2003, 91 (16)
[5]  
Braunstein LA, 2004, LECT NOTES PHYS, V650, P127
[6]  
Bunde A., 1996, FRACTALS DISORDERED
[7]   Network robustness and fragility: Percolation on random graphs [J].
Callaway, DS ;
Newman, MEJ ;
Strogatz, SH ;
Watts, DJ .
PHYSICAL REVIEW LETTERS, 2000, 85 (25) :5468-5471
[8]   Fractal dimensions of percolating networks [J].
Cohen, R ;
Havlin, S .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2004, 336 (1-2) :6-13
[9]   Resilience of the Internet to random breakdowns [J].
Cohen, R ;
Erez, K ;
ben-Avraham, D ;
Havlin, S .
PHYSICAL REVIEW LETTERS, 2000, 85 (21) :4626-4628
[10]   Efficient immunization strategies for computer networks and populations [J].
Cohen, R ;
Havlin, S ;
ben-Avraham, D .
PHYSICAL REVIEW LETTERS, 2003, 91 (24)