The impact of structural genomics: Expectations and outcomes

被引:263
作者
Chandonia, JM
Brenner, SE [1 ]
机构
[1] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley Struct Genom Ctr, Phys Biosci Div, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA
关键词
D O I
10.1126/science.1121018
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 [理学]; 0710 [生物学]; 09 [农学];
摘要
Structural genomics (SG) projects aim to expand our structural knowledge of biological macromolecules while lowering the average costs of structure determination. We quantitatively analyzed the novelty, cost, and impact of structures solved by SG centers, and we contrast these results with traditional structural biology. The first structure identified in a protein family enables inference of the fold and of ancient relationships to other proteins; in the year ending 31 January 2005, about half of such structures were solved at a SG center rather than in a traditional laboratory. Furthermore, the cost of solving a structure at the most efficient SG center in the United States has dropped to one-quarter of the estimated cost of solving a structure by traditional methods. However, the efficiency of the top structural biology laboratories-even though they work on very challenging structures-is comparable to that of SG centers; moreover, traditional structural biology papers are cited significantly more often, suggesting greater current impact.
引用
收藏
页码:347 / 351
页数:5
相关论文
共 29 条
[1]
Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[2]
BASIC LOCAL ALIGNMENT SEARCH TOOL [J].
ALTSCHUL, SF ;
GISH, W ;
MILLER, W ;
MYERS, EW ;
LIPMAN, DJ .
JOURNAL OF MOLECULAR BIOLOGY, 1990, 215 (03) :403-410
[3]
Crystal structure of a DNA-dependent RNA polymerase (DNA primase) [J].
Augustin, MA ;
Huber, R ;
Kaiser, JT .
NATURE STRUCTURAL BIOLOGY, 2001, 8 (01) :57-61
[4]
Protein structure prediction and structural genomics [J].
Baker, D ;
Sali, A .
SCIENCE, 2001, 294 (5540) :93-96
[5]
The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution [J].
Ban, N ;
Nissen, P ;
Hansen, J ;
Moore, PB ;
Steitz, TA .
SCIENCE, 2000, 289 (5481) :905-920
[6]
Bateman A, 2004, NUCLEIC ACIDS RES, V32, pD138, DOI [10.1093/nar/gkp985, 10.1093/nar/gkr1065, 10.1093/nar/gkh121]
[7]
The Protein Data Bank [J].
Berman, HM ;
Westbrook, J ;
Feng, Z ;
Gilliland, G ;
Bhat, TN ;
Weissig, H ;
Shindyalov, IN ;
Bourne, PE .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :235-242
[8]
Brenner SE, 2000, PROTEIN SCI, V9, P197
[9]
Target selection for structural genomics [J].
Brenner, SE .
NATURE STRUCTURAL BIOLOGY, 2000, 7 (Suppl 11) :967-969
[10]
A tour of structural genomics [J].
Brenner, SE .
NATURE REVIEWS GENETICS, 2001, 2 (10) :801-809