The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress

被引:1479
作者
Shaw, RJ
Kosmatka, M
Bardeesy, N
Hurley, RL
Witters, LA
DePinho, RA
Cantley, LC [1 ]
机构
[1] Harvard Univ, Sch Med, Dept Syst Biol, Boston, MA 02215 USA
[2] Beth Israel Deaconess Med Ctr, Div Signal Transduct, Boston, MA 02215 USA
[3] Dana Farber Canc Inst, Dept Med Oncol, Boston, MA 02115 USA
[4] Harvard Univ, Sch Med, Dept Med, Boston, MA 02115 USA
[5] Harvard Univ, Sch Med, Dept Genet, Boston, MA 02115 USA
[6] Dartmouth Coll Sch Med, Dept Med, Hanover, NH 03755 USA
[7] Dartmouth Coll Sch Med, Dept Biochem, Hanover, NH 03755 USA
[8] Dartmouth Coll, Dept Biol Sci, Hanover, NH 03755 USA
关键词
D O I
10.1073/pnas.0308061100
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
AMP-activated protein kinase (AMPK) is a highly conserved sensor of cellular energy status found in all eukaryotic cells. AMPK is activated by stimuli that increase the cellular AMP/ATP ratio. Essential to activation of AMPK is its phosphorylation at Thr-172 by an upstream kinase, AMPKK, whose identity in mammalian cells has remained elusive. Here we present biochemical and genetic evidence indicating that the LKB1 serine/threonine kinase, the gene inactivated in the Peutz-Jeghers familial cancer syndrome, is the dominant regulator of AMPIK activation in several mammalian cell types. We show that LKB1 directly phosphorylates Thr-172 of AMPKalpha in vitro and activates its kinase activity. LKB1-deficient murine embryonic fibroblasts show nearly complete loss of Thr-172 phosphorylation and downstream AMPK signaling in response to a variety of stimuli that activate AMPK. Reintroduction of WT, but not kinase-dead, LKB1 into these cells restores AMPK activity. Furthermore, we show that LKB1 plays a biologically significant role in this pathway, because LKB1-deficient cells are hypersensitive to apoptosis induced by energy stress. On the basis of these results, we propose a model to explain the apparent paradox that LKB1 is a tumor suppressor, yet cells lacking LKB1 are resistant to cell transformation by conventional oncogenes and are sensitive to killing in response to agents that elevate AMP. The role of LKB1/AMPK in the survival of a subset of genetically defined tumor cells may provide opportunities for cancer therapeutics.
引用
收藏
页码:3329 / 3335
页数:7
相关论文
共 39 条
[1]   Activation of the tumour suppressor kinase LKB1 by the STE20-like pseudokinase STRAD [J].
Baas, AF ;
Boudeau, J ;
Sapkota, GP ;
Smit, L ;
Medema, R ;
Morrice, NA ;
Alessi, DR ;
Clevers, HC .
EMBO JOURNAL, 2003, 22 (12) :3062-3072
[2]   Loss of the Lkb1 tumour suppressor provokes intestinal polyposis but resistance to transformation [J].
Bardeesy, N ;
Sinha, M ;
Hezel, AF ;
Signoretti, S ;
Hathaway, NA ;
Sharpless, NE ;
Loda, M ;
Carrasco, DR ;
DePinho, RA .
NATURE, 2002, 419 (6903) :162-167
[3]   LKB1, a protein kinase regulating cell proliferation and polarity [J].
Boudeau, J ;
Sapkota, G ;
Alessi, DR .
FEBS LETTERS, 2003, 546 (01) :159-165
[4]   AMP-activated protein kinase is highly expressed in neurons in the developing rat brain and promotes neuronal survival following glucose deprivation [J].
Culmsee, C ;
Monnig, J ;
Kemp, BE ;
Mattson, MP .
JOURNAL OF MOLECULAR NEUROSCIENCE, 2001, 17 (01) :45-58
[5]   BAD and glucokinase reside in a mitochondrial complex that integrates glycolysis and apoptosis [J].
Danial, NN ;
Gramm, CF ;
Scorrano, L ;
Zhang, CY ;
Krauss, S ;
Ranger, AM ;
Datta, SR ;
Greenberg, ME ;
Licklider, LJ ;
Lowell, BB ;
Gygi, SP ;
Korsmeyer, SJ .
NATURE, 2003, 424 (6951) :952-956
[6]   TISSUE DISTRIBUTION OF THE AMP-ACTIVATED PROTEIN-KINASE, AND LACK OF ACTIVATION BY CYCLIC-AMP-DEPENDENT PROTEIN-KINASE, STUDIED USING A SPECIFIC AND SENSITIVE PEPTIDE ASSAY [J].
DAVIES, SP ;
CARLING, D ;
HARDIE, DG .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1989, 186 (1-2) :123-128
[7]   The anti-diabetic drugs rosiglitazone and metformin stimulate AMP-activated protein kinase through distinct signaling pathways [J].
Fryer, LGD ;
Parbu-Patel, A ;
Carling, D .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (28) :25226-25232
[8]   Characterization of the role of the AMP-activated protein kinase in the stimulation of glucose transport in skeletal muscle cells [J].
Fryer, LGD ;
Foufelle, F ;
Barnes, K ;
Baldwin, SA ;
Woods, A ;
Carling, D .
BIOCHEMICAL JOURNAL, 2002, 363 (363) :167-174
[9]   AMP-activated protein kinase kinase:: detection with recombinant AMPK α1 subunit [J].
Hamilton, SR ;
O'Donnell, JB ;
Hammet, A ;
Stapleton, D ;
Habinowski, SA ;
Means, AR ;
Kemp, BE ;
Witters, LA .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2002, 293 (03) :892-898
[10]   Management of cellular energy by the AMP-activated protein kinase system [J].
Hardie, DG ;
Scott, JW ;
Pan, DA ;
Hudson, ER .
FEBS LETTERS, 2003, 546 (01) :113-120