Vascular endothelial growth factor induces rapid phosphorylation of tight junction proteins occludin and zonula occluden 1 - A potential mechanism for vascular permeability in diabetic retinopathy and tumors

被引:524
作者
Antonetti, DA
Barber, AJ
Hollinger, LA
Wolpert, EB
Gardner, TW
机构
[1] Penn State Univ, Coll Med, Dept Cellular & Mol Physiol, Hershey, PA 17033 USA
[2] Penn State Retina Res Grp, Hershey, PA 17033 USA
关键词
D O I
10.1074/jbc.274.33.23463
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Vascular endothelial growth factor (VEGF) may have a physiologic role in regulating vessel permeability and contributes to the pathophysiology of diabetic retinopathy as well as tumor development. We set out to ascertain the mechanism by which VEGF regulates paracellular permeability in rats. Intra ocular injection of VEGF caused a post-translational modification of occludin as determined by a gel shift from 60 to 62 kDa. This event began by 15 min post-injection and was maximal by 45 min. Alkaline phosphatase treatment revealed this modification was caused by a change in occludin phosphorylation, In addition, the quantity of extracted occludin increased a-fold in the same time frame, The phosphorylation and increased extraction of occludin was recapitulated in retinal endothelial cells in culture after VEGF stimulation. The data presented herein are the first demonstration of a change in the phosphorylation of this transmembrane protein under conditions of increased endothelial permeability, In addition, intraocular injection of VEGF also caused tyrosine phosphorylation of ZO-1 as early as 15 min and increased phosphorylation ii-fold after 90 min. In conclusion, VEGF rapidly increases occludin phosphorylation as well as the tyrosine phosphorylation of ZO-1, Phosphorylation of occludin and ZO-1 likely contribute to regulated endothelial paracellular permeability.
引用
收藏
页码:23463 / 23467
页数:5
相关论文
共 34 条
[1]   Vascular endothelial growth factor-induced retinal permeability is mediated by protein kinase C in vivo and suppressed by an orally effective beta-isoform-selective inhibitor [J].
Aiello, LP ;
Bursell, SE ;
Clermont, A ;
Duh, E ;
Ishii, H ;
Takagi, C ;
Mori, F ;
Ciulla, TA ;
Ways, K ;
Jirousek, M ;
Smith, LEH ;
King, GL .
DIABETES, 1997, 46 (09) :1473-1480
[2]   SUPPRESSION OF RETINAL NEOVASCULARIZATION IN-VIVO BY INHIBITION OF VASCULAR ENDOTHELIAL GROWTH-FACTOR (VEGF) USING SOLUBLE VEGF-RECEPTOR CHIMERIC PROTEINS [J].
AIELLO, LP ;
PIERCE, EA ;
FOLEY, ED ;
TAKAGI, H ;
CHEN, H ;
RIDDLE, L ;
FERRARA, N ;
KING, GL ;
SMITH, LEH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (23) :10457-10461
[3]   VASCULAR ENDOTHELIAL GROWTH-FACTOR IN OCULAR FLUID OF PATIENTS WITH DIABETIC-RETINOPATHY AND OTHER RETINAL DISORDERS [J].
AIELLO, LP ;
AVERY, RL ;
ARRIGG, PG ;
KEYT, BA ;
JAMPEL, HD ;
SHAH, ST ;
PASQUALE, LR ;
THIEME, H ;
IWAMOTO, MA ;
PARK, JE ;
NGUYEN, HV ;
AIELLO, LM ;
FERRARA, N ;
KING, GL .
NEW ENGLAND JOURNAL OF MEDICINE, 1994, 331 (22) :1480-1487
[4]   ZONULA OCCLUDENS (ZO)-I AND ZO-2 - MEMBRANE-ASSOCIATED GUANYLATE KINASE HOMOLOGS (MAGUKS) OF THE TIGHT JUNCTION [J].
ANDERSON, JM ;
FANNING, AS ;
LAPIERRE, L ;
VANITALLIE, CM .
BIOCHEMICAL SOCIETY TRANSACTIONS, 1995, 23 (03) :470-475
[5]   TIGHT JUNCTIONS AND THE MOLECULAR-BASIS FOR REGULATION OF PARACELLULAR PERMEABILITY [J].
ANDERSON, JM ;
VANITALLIE, CM .
AMERICAN JOURNAL OF PHYSIOLOGY-GASTROINTESTINAL AND LIVER PHYSIOLOGY, 1995, 269 (04) :G467-G475
[6]   CHARACTERIZATION OF ZO-1, A PROTEIN-COMPONENT OF THE TIGHT JUNCTION FROM MOUSE-LIVER AND MADIN-DARBY CANINE KIDNEY-CELLS [J].
ANDERSON, JM ;
STEVENSON, BR ;
JESAITIS, LA ;
GOODENOUGH, DA ;
MOOSEKER, MS .
JOURNAL OF CELL BIOLOGY, 1988, 106 (04) :1141-1149
[7]   Interspecies diversity of the occludin sequence: cDNA cloning of human, mouse, dog, and rat-kangaroo homologues [J].
AndoAkatsuka, Y ;
Saitou, M ;
Hirase, T ;
Kishi, M ;
Sakakibara, A ;
Itoh, M ;
Yonemura, S ;
Furuse, M ;
Tsukita, S .
JOURNAL OF CELL BIOLOGY, 1996, 133 (01) :43-47
[8]   Vascular permeability in experimental diabetes is associated with reduced endothelial occludin content - Vascular endothelial growth factor decreases occludin in retinal endothelial cells [J].
Antonetti, DA ;
Barber, AJ ;
Khin, S ;
Lieth, E ;
Tarbell, JM ;
Gardner, TW .
DIABETES, 1998, 47 (12) :1953-1959
[9]  
Balda MS, 1998, J CELL SCI, V111, P541
[10]   COOH terminus of occludin is required for tight junction barrier function in early Xenopus embryos [J].
Chen, YH ;
Merzdorf, C ;
Paul, DL ;
Goodenough, DA .
JOURNAL OF CELL BIOLOGY, 1997, 138 (04) :891-899