Regulation of GLUT1 gene transcription by the serine threonine kinase Akt1

被引:264
作者
Barthel, A [1 ]
Okino, ST [1 ]
Liao, JF [1 ]
Nakatani, K [1 ]
Li, JP [1 ]
Whitlock, JP [1 ]
Roth, RA [1 ]
机构
[1] Stanford Univ, Med Ctr, Sch Med, Dept Mol Pharmacol, Stanford, CA 94305 USA
关键词
D O I
10.1074/jbc.274.29.20281
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We used mouse hepatoma (Hepa1c1c7) cells to study the role of the serine/threonine kinase Akt in the induction of GLUT1 gene expression. In order to selectively turn on the Akt kinase cascade, we expressed a hydroxytamoxifen-regulatable form of Akt (myristoylated Akt1 estrogen receptor chimera (MER-Akt1)) in the Hepa1c1c7 cells; we verified that hydroxytamoxifen stimulates MER-Akt1 activity to a similar extent as the activation of endogenous Akt by insulin. Our studies reveal that stimulation of MER-Akt1 by hydroxytamoxifen induces GLUT1 mRNA and protein accumulation to levels comparable to that induced by insulin; therefore, activation of the Akt cascade suffices to induce GLUT1 gene expression in this cell system. Furthermore, expression of a kinase-inactive Akt mutant partially inhibits the response of the GLUT1 gene to insulin. Additional studies reveal that the induction of GLUT1 mRNA by Akt and by insulin reflects increased mRNA synthesis and not decreased mRNA degradation. Our findings imply that the GLUT1 gene responds to insulin at the transcriptional level and that Akt mediates a step in the activation of GLUT1 gene expression in this system.
引用
收藏
页码:20281 / 20286
页数:6
相关论文
共 40 条
[1]   Assessment of the roles of mitogen-activated protein kinase, phosphatidylinositol 3-kinase, protein kinase B, and protein kinase C in insulin inhibition of cAMP-induced phosphoenolpyruvate carboxykinase gene transcription [J].
Agati, JM ;
Yeagley, D ;
Quinn, PG .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (30) :18751-18759
[2]   REGULATION OF GLUCOSE-TRANSPORT AND GLUT1 GLUCOSE TRANSPORTER EXPRESSION BY O2 IN MUSCLE-CELLS IN CULTURE [J].
BASHAN, N ;
BURDETT, E ;
HUNDAL, HS ;
KLIP, A .
AMERICAN JOURNAL OF PHYSIOLOGY, 1992, 262 (03) :C682-C690
[3]   Dual control of glut1 glucose transporter gene expression by hypoxia and by inhibition of oxidative phosphorylation [J].
Behrooz, A ;
IsmailBeigi, F .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (09) :5555-5562
[4]   TRANSFORMATION OF RAT FIBROBLASTS BY FSV RAPIDLY INCREASES GLUCOSE TRANSPORTER GENE-TRANSCRIPTION [J].
BIRNBAUM, MJ ;
HASPEL, HC ;
ROSEN, OM .
SCIENCE, 1987, 235 (4795) :1495-1498
[5]   Insulin increases the association of akt-2 with Glut4-containing vesicles [J].
Calera, MR ;
Martinez, C ;
Liu, HZ ;
El Jack, AK ;
Birnbaum, MJ ;
Pilch, PF .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (13) :7201-7204
[6]   Protein kinase B/Akt mediates effects of insulin on hepatic insulin-like growth factor-binding protein-1 gene expression through a conserved insulin response sequence [J].
Cichy, SB ;
Uddin, S ;
Danilkovich, A ;
Guo, SD ;
Klippel, A ;
Unterman, TG .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (11) :6482-6487
[7]  
Coffer PJ, 1998, BIOCHEM J, V335, P1
[8]  
DEHERREROS AG, 1989, J BIOL CHEM, V264, P19994
[9]   Central role for phosphatidylinositide 3-kinase in the repression of glucose-6-phosphatase gene transcription by insulin [J].
Dickens, M ;
Svitek, CA ;
Culbert, AA ;
O'Brien, RM ;
Tavaré, JM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (32) :20144-20149
[10]   CREB is a regulatory target for the protein kinase Akt/PKB [J].
Du, KY ;
Montminy, M .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (49) :32377-32379