Tensor Decompositions and Applications

被引:7470
作者
Kolda, Tamara G. [1 ]
Bader, Brett W. [2 ]
机构
[1] Sandia Natl Labs, Math Informat & Decis Sci Dept, Livermore, CA 94551 USA
[2] Sandia Natl Labs, Dept Informat & Comp Sci, Albuquerque, NM 87185 USA
基金
美国能源部;
关键词
tensor decompositions; multiway arrays; multilinear algebra; parallel factors (PARAFAC); canonical decomposition (CANDECOMP); higher-order principal components analysis (Tucker); higher-order singular value decomposition (HOSVD); PARALLEL FACTOR-ANALYSIS; INDEPENDENT COMPONENT ANALYSIS; LEAST-SQUARES ALGORITHM; HIGHER-ORDER TENSOR; 3-WAY PRINCIPAL COMPONENT; PART I; CANONICAL DECOMPOSITION; TYPICAL RANK; PRODUCT APPROXIMATION; BLIND IDENTIFICATION;
D O I
10.1137/07070111X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This survey provides an overview of higher-order tensor decompositions, their applications, and available software. A tensor is a multidimensional or N-way array. Decompositions of higher-order tensors (i.e., N-way arrays with N >= 3) have applications in psychometrics, chemometrics, signal processing, numerical linear algebra, computer vision, numerical analysis, data mining, neuroscience, graph analysis, and elsewhere. Two particular tensor decompositions can be considered to be higher-order extensions of the matrix singular value decomposition: CANDECOMP/PARAFAC (CP) decomposes a tensor as a sum of rank-one tensors, and the Tucker decomposition is a higher-order form of principal component analysis. There are many other tensor decompositions, including INDSCAL, PARAFAC2, CANDELINC, DEDICOM, and PARATUCK2 as well as nonnegative variants of all of the above. The N-way Toolbox, Tensor Toolbox, and Multilinear Engine are examples of software packages for working with tensors.
引用
收藏
页码:455 / 500
页数:46
相关论文
共 254 条
[1]  
Abdallah EE, 2007, LECT NOTES COMPUT SC, V4633, P772
[2]  
Acar E, 2005, LECT NOTES COMPUT SC, V3495, P256
[3]  
ACAR E, 2007, EMBS 2007, P4273
[4]   Unsupervised Multiway Data Analysis: A Literature Survey [J].
Acar, Evrim ;
Yener, Buelent .
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2009, 21 (01) :6-20
[5]   Multiway analysis of epilepsy tensors [J].
Acar, Evrim ;
Aykut-Bingol, Canan ;
Bingol, Haluk ;
Bro, Rasmus ;
Yener, Buelent .
BIOINFORMATICS, 2007, 23 (13) :I10-I18
[6]  
Acar E, 2006, LECT NOTES COMPUT SC, V3975, P213
[7]  
Alexander J., 1995, J. Algebraic Geom., V4, P201
[8]   Structure-seeking multilinear methods for the analysis of MRI data [J].
Andersen, AH ;
Rayens, WS .
NEUROIMAGE, 2004, 22 (02) :728-739
[9]   Practical aspects of PARAFAC modeling of fluorescence excitation-emission data [J].
Andersen, CM ;
Bro, R .
JOURNAL OF CHEMOMETRICS, 2003, 17 (04) :200-215
[10]   A general algorithm for obtaining simple structure of core arrays in N-way PCA with application to fluorometric data [J].
Andersson, CA ;
Henrion, R .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1999, 31 (03) :255-278