A laminin and nerve growth factor-laden three-dimensional scaffold for enhanced neurite extension

被引:143
作者
Yu, XJ [1 ]
Dillon, GP [1 ]
Bellamkonda, RV [1 ]
机构
[1] Case Western Reserve Univ, Dept Biomed Engn, Biomat Cell & Tissue Engn Lab, Cleveland, OH 44106 USA
来源
TISSUE ENGINEERING | 1999年 / 5卷 / 04期
关键词
D O I
10.1089/ten.1999.5.291
中图分类号
Q813 [细胞工程];
学科分类号
摘要
Agarose hydrogel scaffolds were engineered to stimulate and guide neuronal process extension in three dimensions in vitro. The extracellular matrix (ECM) protein laminin (LN) was covalently coupled to agarose hydrogel using the bifunctional cross-linking reagent 1,1'-carbonyldiimidazole (CDI). Compared to unmodified agarose gels, LN-modified agarose gels significantly enhanced neurite extension from three-dimensionally (3D) cultured embryonic day 9 (E9) chick dorsal root ganglia (DRGs), and PC 12 cells. After incubation of DRGs or PC 12 cells with YIGSR peptide or integrin beta 1 antibody respectively, the neurite outgrowth promoting effects in LN-modified agarose gels were significantly decreased or abolished. These results indicate that DRG/PC 12 cell neurite outgrowth promoting effect of LN-modified agarose gels involves receptors for YIGSR/integrin beta 1 subunits respectively, 1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphocholine (DC8,9PC)-based lipid microcylinders were loaded with nerve growth factor (NGF), and embedded into agarose hydrogels. The resulting trophic factor gradients stimulated directional neurite extension from DRGs in agarose hydrogels, A PC 12 cell-based bioassay demonstrated that NGF-loaded lipid microcylinders can release physiologically relevant amounts of NGF for at least 7 days in vitro. Agarose hydrogel scaffolds may find application as biosynthetic 3D bridges that promote regeneration across severed nerve gaps.
引用
收藏
页码:291 / 304
页数:14
相关论文
共 40 条
[1]   BLIND-ENDED SEMIPERMEABLE GUIDANCE CHANNELS SUPPORT PERIPHERAL-NERVE REGENERATION IN THE ABSENCE OF A DISTAL NERVE STUMP [J].
AEBISCHER, P ;
GUENARD, V ;
WINN, SR ;
VALENTINI, RF ;
GALLETTI, PM .
BRAIN RESEARCH, 1988, 454 (1-2) :179-187
[2]  
[Anonymous], BIOCH COLLAGEN
[3]   A COLLAGEN-BASED NERVE GUIDE CONDUIT FOR PERIPHERAL-NERVE REPAIR - AN ELECTROPHYSIOLOGICAL STUDY OF NERVE REGENERATION IN RODENTS AND NONHUMAN-PRIMATES [J].
ARCHIBALD, SJ ;
KRARUP, C ;
SHEFNER, J ;
LI, ST ;
MADISON, RD .
JOURNAL OF COMPARATIVE NEUROLOGY, 1991, 306 (04) :685-696
[4]   HYDROGEL-BASED 3-DIMENSIONAL MATRIX FOR NEURAL CELLS [J].
BELLAMKONDA, R ;
RANIERI, JP ;
BOUCHE, N ;
AEBISCHER, P .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH, 1995, 29 (05) :663-671
[5]   LAMININ OLIGOPEPTIDE DERIVATIZED AGAROSE GELS ALLOW 3-DIMENSIONAL NEURITE EXTENSION IN-VITRO [J].
BELLAMKONDA, R ;
RANIERI, JP ;
AEBISCHER, P .
JOURNAL OF NEUROSCIENCE RESEARCH, 1995, 41 (04) :501-509
[6]   KINETICS OF PRODUCTION OF A NOVEL GROWTH-FACTOR AFTER PERIPHERAL-NERVE INJURY [J].
BLEXRUD, MD ;
LEE, DA ;
WINDEBANK, AJ ;
BRUNDEN, KR .
JOURNAL OF THE NEUROLOGICAL SCIENCES, 1990, 98 (2-3) :287-299
[7]  
Borkenhagen M, 1998, J BIOMED MATER RES, V40, P392, DOI 10.1002/(SICI)1097-4636(19980603)40:3<392::AID-JBM8>3.3.CO
[8]  
2-4
[9]   DOWN-REGULATION OF A 67-KDA YIGSR-BINDING PROTEIN UPON DIFFERENTIATION OF HUMAN NEUROBLASTOMA-CELLS [J].
BUSHKINHARAV, I ;
GARTY, NB ;
LITTAUER, UZ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (22) :13422-13428
[10]   The influence of physical structure and charge on neurite extension in a 3D hydrogel scaffold [J].
Dillon, GP ;
Yu, XJ ;
Sridharan, A ;
Ranieri, JP ;
Bellamkonda, RV .
JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION, 1998, 9 (10) :1049-1069