Parameter estimation for 2-parameter generalized pareto distribution by POME

被引:16
作者
Singh, VP
Guo, H
机构
[1] Department of Civil and Environmental Engineering, Louisiana State University, Baton Rouge
来源
STOCHASTIC HYDROLOGY AND HYDRAULICS | 1997年 / 11卷 / 03期
关键词
D O I
10.1007/BF02427916
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The principle of maximum entropy (POME) was employed to derive a new method of parameter estimation for the 2-parameter generalized Pareto (GP2) distribution. Monte Carlo simulated data were used to evaluate this method and compare it with the methods of moments (MOM), probability weighted moments (PWM), and maximum likelihood estimation (MLE). The parameter estimates yielded by POME were comparable or better within certain ranges of sample size and coefficient of variation.
引用
收藏
页码:211 / 227
页数:17
相关论文
共 28 条
[1]  
[Anonymous], 1969, Rational Descriptions, Decisions and Designs
[2]  
[Anonymous], 1984, STAT EXTREMES APPL, DOI DOI 10.1007/978-94-017-3069-3_34
[3]  
[Anonymous], PROBABILITY THEORY S
[4]   AN EXTREME VALUE ANALYSIS OF THE FLOW OF BURBAGE BROOK [J].
BARRETT, JH .
STOCHASTIC HYDROLOGY AND HYDRAULICS, 1992, 6 (03) :151-165
[5]  
Davison A.C., 1984, THESIS IMPERIAL COLL
[6]  
DAVISON AC, 1990, J ROY STAT SOC B MET, V52, P393
[7]   ESTIMATING THE STABLE INDEX-ALPHA IN ORDER TO MEASURE TAIL THICKNESS - A CRITIQUE [J].
DUMOUCHEL, WH .
ANNALS OF STATISTICS, 1983, 11 (04) :1019-1031
[8]  
Hosking J. R. M., 1986, RC12210 IBM
[9]   PARAMETER AND QUANTILE ESTIMATION FOR THE GENERALIZED PARETO DISTRIBUTION [J].
HOSKING, JRM ;
WALLIS, JR .
TECHNOMETRICS, 1987, 29 (03) :339-349
[10]   PRIOR PROBABILITIES [J].
JAYNES, ET .
IEEE TRANSACTIONS ON SYSTEMS SCIENCE AND CYBERNETICS, 1968, SSC4 (03) :227-&