The role of TOR in autophagy regulation from yeast to plants and mammals

被引:305
作者
Diaz-Troya, Sandra [1 ]
Perez-Perez, Maria Esther [1 ]
Florencio, Francisco J. [1 ]
Crespo, Jose L. [1 ]
机构
[1] CSIC, Inst Bioquim Vegetal & Fotosintesis, Seville 41092, Spain
关键词
TOR signaling; rapamycin; cell growth; kinase; autophagy; ATG genes; plants; algae;
D O I
10.4161/auto.6555
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The target of rapamycin (TOR) is a conserved Ser/Thr kinase that controls cell growth by activating an array of anabolic processes including protein synthesis, transcription and ribosome biogenesis, and by inhibiting catabolic processes such as mRNA degradation and autophagy. Control of autophagy by TOR occurs primarily at the induction step, and involves activation of the ATG1 kinase, a conserved component of the autophagic machinery. A substantial number of genes participating in autophagy have been originally identified in yeast. Most of these genes have mammalian homologues and many have apparent homologues in plants, indicating that autophagy is conserved among eukaryotes. The recent identification of TOR as a key element in cell growth control in plants and algae opens the way for future studies to investigate whether this signaling pathway may also control autophagy in photosynthetic organisms.
引用
收藏
页码:851 / 865
页数:15
相关论文
共 166 条
[1]   Chemical genetic analysis of Apg1 reveals a nonkinase role in the induction of autophagy [J].
Abeliovich, H ;
Zhang, C ;
Dunn, WA ;
Shokat, KM ;
Klionsky, DJ .
MOLECULAR BIOLOGY OF THE CELL, 2003, 14 (02) :477-490
[2]   Autophagy in yeast: Mechanistic insights and physiological function [J].
Abeliovich, H ;
Klionsky, DJ .
MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, 2001, 65 (03) :463-+
[3]   Fission yeast Tor2 promotes cell growth and represses cell differentiation [J].
Alvarez, Beatriz ;
Moreno, Sergio .
JOURNAL OF CELL SCIENCE, 2006, 119 (21) :4475-4485
[4]   The Arabidopsis Mei2 homologue AMLI binds AtRaptorIB, the plant homologue of a major regulator of eukaryotic cell growth [J].
Anderson, Garrett H. ;
Hanson, Maureen R. .
BMC PLANT BIOLOGY, 2005, 5 (1)
[5]   The Arabidopsis AtRaptor genes are essential for post-embryonic plant growth [J].
Anderson, GH ;
Veit, B ;
Hanson, MR .
BMC BIOLOGY, 2005, 3 (1)
[6]   Regulation of ceramide biosynthesis by TOR complex 2 [J].
Aronova, Sofia ;
Wedaman, Karen ;
Aronov, Pavel A. ;
Fontes, Kristin ;
Ramos, Karmela ;
Hammock, Bruce D. ;
Powers, Ted .
CELL METABOLISM, 2008, 7 (02) :148-158
[7]   Genome-wide lethality screen identifies new PI4,5P2 effectors that regulate the actin cytoskeleton [J].
Audhya, A ;
Loewith, R ;
Parsons, AB ;
Gao, L ;
Tabuchi, M ;
Zhou, HL ;
Boone, C ;
Hall, MN ;
Emr, SD .
EMBO JOURNAL, 2004, 23 (19) :3747-3757
[8]   Two distinct pathways for targeting proteins from the cytoplasm to the vacuole/lysosome [J].
Baba, M ;
Osumi, M ;
Scott, SV ;
Klionsky, DJ ;
Ohsumi, Y .
JOURNAL OF CELL BIOLOGY, 1997, 139 (07) :1687-1695
[9]   Rheb activates mTOR by antagonizing its endogenous inhibitor, FKBP38 [J].
Bai, Xiaochun ;
Ma, Dongzhu ;
Liu, Anling ;
Shen, Xiaoyun ;
Wang, Qiming J. ;
Liu, Yongjian ;
Jiang, Yu .
SCIENCE, 2007, 318 (5852) :977-980
[10]   TOR controls translation initiation and early G1 progression in yeast [J].
Barbet, NC ;
Schneider, U ;
Helliwell, SB ;
Stansfield, I ;
Tuite, MF ;
Hall, MN .
MOLECULAR BIOLOGY OF THE CELL, 1996, 7 (01) :25-42