Structure of the Escherichia coli response regulator NarL

被引:277
作者
Baikalov, I
Schroder, I
KaczorGrzeskowiak, M
Grzeskowiak, K
Gunsalus, RP
Dickerson, RE
机构
[1] UNIV CALIF LOS ANGELES,INST MOL BIOL,LOS ANGELES,CA 90095
[2] UNIV CALIF LOS ANGELES,DEPT MICROBIOL & MOL GENET,LOS ANGELES,CA 90095
关键词
D O I
10.1021/bi960919o
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The crystal structure analysis of the NarL protein provides a first look at interactions between receiver and effector domains of a full-length bacterial response regulator. The N-terminal receiver domain, with 131 amino acids, is folded into a 5-strand beta sheet flanked by 5 alpha helices, as seen in CheY and in the N-terminal domain of NTRC. The C-terminal DNA-binding domain, with 62 amino acids, is a compact bundle of 4 alpha helices, of which the middle 2 form a helix-turn-helix motif closely related to that of Drosophila paired protein and other H-T-H DNA-binding proteins. The 2 domains are connected by an alpha helix of 10 amino acids and a 13-residue flexible tether that is not visible and presumably disordered in the X-ray structure. In this unphosphorylated form of NarL, the C-terminal domain is turned against the receiver domain in a manner that would preclude DNA binding. Activation of NarL via phosphorylation of Asp59 must involve transfer of information to the interdomain interface and either rotation or displacement of the DNA-binding C-terminal domain. Docking of a B-DNA duplex against the isolated C-terminal domain in the manner observed in paired protein and other H-T-H proteins suggests a stereochemical basis for DNA sequence preference: T-R-C-C-Y (high affinity) or T-R-C-T-N (low affinity), which is close to the experimentally observed consensus sequence: T-A-C-Y-N. The NarL structure is a model for other members of the FixJ or LuxR family of bacterial transcriptional activators, and possibly to the more distant OmpR and NtrC families as well.
引用
收藏
页码:11053 / 11061
页数:9
相关论文
共 43 条
[1]  
[Anonymous], [No title captured]
[2]   THE CCP4 SUITE - PROGRAMS FOR PROTEIN CRYSTALLOGRAPHY [J].
BAILEY, S .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1994, 50 :760-763
[3]   MAGNESIUM BINDING TO THE BACTERIAL CHEMOTAXIS PROTEIN CHEY RESULTS IN LARGE CONFORMATIONAL-CHANGES INVOLVING ITS FUNCTIONAL SURFACE [J].
BELLSOLELL, L ;
PRIETO, J ;
SERRANO, L ;
COLL, M .
JOURNAL OF MOLECULAR BIOLOGY, 1994, 238 (04) :489-495
[4]  
*BIOS MSI, 1995, INS 2 US GUID
[5]   SIGNAL TRANSDUCTION PATHWAYS INVOLVING PROTEIN-PHOSPHORYLATION IN PROKARYOTES [J].
BOURRET, RB ;
BORKOVICH, KA ;
SIMON, MI .
ANNUAL REVIEW OF BIOCHEMISTRY, 1991, 60 :401-441
[6]   FREE R-VALUE - A NOVEL STATISTICAL QUANTITY FOR ASSESSING THE ACCURACY OF CRYSTAL-STRUCTURES [J].
BRUNGER, AT .
NATURE, 1992, 355 (6359) :472-475
[7]   RIBBON MODELS OF MACROMOLECULES [J].
CARSON, M .
JOURNAL OF MOLECULAR GRAPHICS, 1987, 5 (02) :103-&
[8]   OXYGEN, NITRATE, AND MOLYBDENUM REGULATION OF DMSABC GENE-EXPRESSION IN ESCHERICHIA-COLI [J].
COTTER, PA ;
GUNSALUS, RP .
JOURNAL OF BACTERIOLOGY, 1989, 171 (07) :3817-3823
[9]  
Cowtan K., 1994, JOINT CCP4 ESF EACBM, V31, P34
[10]   NITRATE AND NITRITE REGULATION OF THE FNR-DEPENDENT AEG-46.5 PROMOTER OF ESCHERICHIA-COLI K-12 IS MEDIATED BY COMPETITION BETWEEN HOMOLOGOUS RESPONSE REGULATORS (NARL AND NARP) FOR A COMMON DNA-BINDING SITE [J].
DARWIN, AJ ;
STEWART, V .
JOURNAL OF MOLECULAR BIOLOGY, 1995, 251 (01) :15-29