A Sparse-Group Lasso

被引:992
作者
Simon, Noah [1 ]
Friedman, Jerome [1 ]
Hastie, Trevor [2 ]
Tibshirani, Robert [2 ]
机构
[1] Stanford Univ, Dept Stat, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Stat, Dept Hlth Res & Policy, Stanford, CA 94305 USA
关键词
Model; Nesterov; Penalize; Regression; Regularize; REGULARIZATION; SELECTION;
D O I
10.1080/10618600.2012.681250
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For high-dimensional supervised learning problems, often using problem-specific assumptions can lead to greater accuracy. For problems with grouped covariates, which are believed to have sparse effects both on a group and within group level, we introduce a regularized model for linear regression with l(1) and l(2) penalties. We discuss the sparsity and other regularization properties of the optimal fit for this model, and show that it has the desired effect of group-wise and within group sparsity. We propose an algorithm to fit the model via accelerated generalized gradient descent, and extend this model and algorithm to convex loss functions. We also demonstrate the efficacy of our model and the efficiency of our algorithm on simulated data. This article has online supplementary material.
引用
收藏
页码:231 / 245
页数:15
相关论文
共 15 条
[1]  
[Anonymous], 2010, ARXIV10010736V1
[2]  
[Anonymous], 2009, P 26 ANN INT C MACH, DOI DOI 10.1145/1553374.1553431
[3]  
[Anonymous], 2006, Journal of the Royal Statistical Society, Series B
[4]  
[Anonymous], 2007, GRADIENT METHODS MIN
[5]  
Becker S., 2009, ARXIV09043367V1
[6]   Molecular classification of Crohn's disease and ulcerative colitis patients using transcriptional profiles in peripheral blood mononuclear cells [J].
Burczynski, ME ;
Peterson, RL ;
Twine, NC ;
Zuberek, KA ;
Brodeur, BJ ;
Casciotti, L ;
Maganti, V ;
Reddy, PS ;
Strahs, A ;
Immermann, F ;
Spinelli, W ;
Schwertschlag, U ;
Slager, AM ;
Cotreau, MM ;
Dorner, AJ .
JOURNAL OF MOLECULAR DIAGNOSTICS, 2006, 8 (01) :51-61
[7]  
Foygel R., 2010, ARXIV10103320V2
[8]   Regularization Paths for Generalized Linear Models via Coordinate Descent [J].
Friedman, Jerome ;
Hastie, Trevor ;
Tibshirani, Rob .
JOURNAL OF STATISTICAL SOFTWARE, 2010, 33 (01) :1-22
[9]   A two-gene expression ratio predicts clinical outcome in breast cancer patients treated with tamoxifen [J].
Ma, XJ ;
Wang, ZC ;
Ryan, PD ;
Isakoff, SJ ;
Barmettler, A ;
Fuller, A ;
Muir, B ;
Mohapatra, G ;
Salunga, R ;
Tuggle, JT ;
Tran, Y ;
Tran, D ;
Tassin, A ;
Amon, P ;
Wang, W ;
Wang, W ;
Enright, E ;
Stecker, K ;
Estepa-Sabal, E ;
Smith, B ;
Younger, J ;
Balis, U ;
Michaelson, J ;
Bhan, A ;
Habin, K ;
Baer, TM ;
Brugge, J ;
Haber, DA ;
Erlander, MG ;
Sgroi, DC .
CANCER CELL, 2004, 5 (06) :607-616
[10]   The group lasso for logistic regression [J].
Meier, Lukas ;
van de Geer, Sara A. ;
Buhlmann, Peter .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2008, 70 :53-71