Rank-one approximation to high order tensors

被引:321
作者
Zhang, T
Golub, GH
机构
[1] IBM Corp, Thomas J Watson Res Ctr, Yorktown Hts, NY 10598 USA
[2] Stanford Univ, Sci Comp & Computat Math Program, Stanford, CA 94305 USA
关键词
singular value decomposition; low-rank approximation; tensor decomposition;
D O I
10.1137/S0895479899352045
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The singular value decomposition (SVD) has been extensively used in engineering and statistical applications. This method was originally discovered by Eckart and Young in [Psychometrika, 1 (1936), pp. 211-218], where they considered the problem of low-rank approximation to a matrix. A natural generalization of the SVD is the problem of low-rank approximation to high order tensors, which we call the multidimensional SVD. In this paper, we investigate certain properties of this decomposition as well as numerical algorithms.
引用
收藏
页码:534 / 550
页数:17
相关论文
共 31 条
[1]  
Berge J. M. F. t., 1987, PSYCHOMETRIKA, V52, P183
[2]   NUMERICAL-METHODS FOR SIMULTANEOUS DIAGONALIZATION [J].
BUNSEGERSTNER, A ;
BYERS, R ;
MEHRMANN, V .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1993, 14 (04) :927-949
[3]   Infomax and maximum likelihood for blind source separation [J].
Cardoso, JF .
IEEE SIGNAL PROCESSING LETTERS, 1997, 4 (04) :112-114
[4]   Jacobi angles for simultaneous diagonalization [J].
Cardoso, JF ;
Souloumiac, A .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1996, 17 (01) :161-164
[5]   Equivariant adaptive source separation [J].
Cardoso, JF ;
Laheld, BH .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1996, 44 (12) :3017-3030
[6]  
CARDOSO JF, 1996, ISCAS, V2, P93
[7]   ANALYSIS OF INDIVIDUAL DIFFERENCES IN MULTIDIMENSIONAL SCALING VIA AN N-WAY GENERALIZATION OF ECKART-YOUNG DECOMPOSITION [J].
CARROLL, JD ;
CHANG, JJ .
PSYCHOMETRIKA, 1970, 35 (03) :283-&
[8]   MA IDENTIFICATION USING 4TH-ORDER CUMULANTS [J].
COMON, P .
SIGNAL PROCESSING, 1992, 26 (03) :381-388
[9]   INDEPENDENT COMPONENT ANALYSIS, A NEW CONCEPT [J].
COMON, P .
SIGNAL PROCESSING, 1994, 36 (03) :287-314
[10]   Decomposition of quantics in sums of powers of linear forms [J].
Comon, P ;
Mourrain, B .
SIGNAL PROCESSING, 1996, 53 (2-3) :93-107