Least squares support vector machine classifiers

被引:9477
作者
Suykens, JAK [1 ]
Vandewalle, J [1 ]
机构
[1] Katholieke Univ Leuven, Dept Elect Engn, ESAT, SISTA, B-3001 Heverlee, Belgium
关键词
classification; support vector machines; linear least squares; radial basis function kernel;
D O I
10.1023/A:1018628609742
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this letter we discuss a least squares version for support vector machine (SVM) classifiers. Due to equality type constraints in the formulation, the solution follows from solving a set of linear equations, instead of quadratic programming for classical SVM's. The approach is illustrated on a two-spiral benchmark classification problem.
引用
收藏
页码:293 / 300
页数:8
相关论文
共 12 条
[1]  
Bishop C. M., 1995, NEURAL NETWORKS PATT
[2]  
Cherkassky V.S., 1998, LEARNING DATA CONCEP, V1st ed.
[3]  
Fletcher R., 1981, PRACTICAL METHODS OP
[4]  
Golub GH, 1989, MATRIX COMPUTATIONS
[5]  
Haykin S, 1998, NEURAL NETWORKS COMP
[6]   Circular backpropagation networks for classification [J].
Ridella, S ;
Rovetta, S ;
Zunino, R .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1997, 8 (01) :84-97
[7]  
Saunders C, 1998, Ridge regression learning algorithm in dual variables
[8]   Comparing support vector machines with Gaussian kernels to radial basis function classifiers [J].
Scholkopf, B ;
Sung, KK ;
Burges, CJC ;
Girosi, F ;
Niyogi, P ;
Poggio, T ;
Vapnik, V .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1997, 45 (11) :2758-2765
[9]  
Vapnik V, 1998, NONLINEAR MODELING, P55
[10]  
Vapnik V, 1999, NATURE STAT LEARNING