A Blood-Based Proteomic Classifier for the Molecular Characterization of Pulmonary Nodules

被引:167
作者
Li, Xiao-jun [1 ]
Hayward, Clive [1 ]
Fong, Pui-Yee [1 ]
Dominguez, Michel [1 ]
Hunsucker, Stephen W. [1 ]
Lee, Lik Wee [1 ]
McLean, Matthew [1 ]
Law, Scott [1 ]
Butler, Heather [1 ]
Schirm, Michael [2 ]
Gingras, Olivier [2 ]
Lamontagne, Julie [2 ]
Allard, Rene [2 ]
Chelsky, Daniel [2 ]
Price, Nathan D. [3 ]
Lam, Stephen [4 ]
Massion, Pierre P. [5 ,6 ]
Pass, Harvey [7 ]
Rom, William N. [8 ]
Vachani, Anil [9 ]
Fang, Kenneth C. [1 ]
Hood, Leroy [3 ]
Kearney, Paul [1 ]
机构
[1] Integrated Diagnost, Seattle, WA 98109 USA
[2] Caprion Prote, Montreal, PQ H2X 3Y7, Canada
[3] Inst Syst Biol, Seattle, WA 98109 USA
[4] British Columbia Canc Agcy, Dept Pulm Med, Vancouver, BC V5Z 4E6, Canada
[5] Vanderbilt Univ, Med Ctr, Dept Med, Div Pulm & Crit Care Med, Nashville, TN 37232 USA
[6] Vanderbilt Ingram Comprehens Canc Ctr, Thorac Oncol Ctr, Nashville, TN 37232 USA
[7] New York Univ, Langone Med Ctr, Dept Cardiothorac Surg, New York, NY 10016 USA
[8] NYU, Sch Med, Dept Med, Div Pulm Crit Care & Sleep Med, New York, NY 10016 USA
[9] Univ Penn, Perelman Sch Med, Pulm Allergy & Crit Care Div, Philadelphia, PA 19104 USA
关键词
CELL LUNG-CANCER; CHROMATOGRAPHY-MASS-SPECTROMETRY; LIQUID-CHROMATOGRAPHY; PROTEIN IDENTIFICATION; TARGETED PROTEOMICS; PLASMA; SERUM; BIOMARKERS; DISCOVERY; EXPRESSION;
D O I
10.1126/scitranslmed.3007013
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Each year, millions of pulmonary nodules are discovered by computed tomography and subsequently biopsied. Because most of these nodules are benign, many patients undergo unnecessary and costly invasive procedures. We present a 13-protein blood-based classifier that differentiates malignant and benign nodules with high confidence, thereby providing a diagnostic tool to avoid invasive biopsy on benign nodules. Using a systems biology strategy, we identified 371 protein candidates and developed a multiple reaction monitoring (MRM) assay for each. The MRM assays were applied in a three-site discovery study (n = 143) on plasma samples from patients with benign and stage IA lung cancer matched for nodule size, age, gender, and clinical site, producing a 13-protein classifier. The classifier was validated on an independent set of plasma samples (n = 104), exhibiting a negative predictive value (NPV) of 90%. Validation performance on samples from a nondiscovery clinical site showed an NPV of 94%, indicating the general effectiveness of the classifier. A pathway analysis demonstrated that the classifier proteins are likely modulated by a few transcription regulators (NF2L2, AHR, MYC, and FOS) that are associated with lung cancer, lung inflammation, and oxidative stress networks. The classifier score was independent of patient nodule size, smoking history, and age, which are risk factors used for clinical management of pulmonary nodules. Thus, this molecular test provides a potential complementary tool to help physicians in lung cancer diagnosis.
引用
收藏
页数:10
相关论文
共 71 条
[1]   A pipeline that integrates the discovery and verification of plasma protein biomarkers reveals candidate markers for cardiovascular disease [J].
Addona, Terri A. ;
Shi, Xu ;
Keshishian, Hasmik ;
Mani, D. R. ;
Burgess, Michael ;
Gillette, Michael A. ;
Clauser, Karl R. ;
Shen, Dongxiao ;
Lewis, Gregory D. ;
Farrell, Laurie A. ;
Fifer, Michael A. ;
Sabatine, Marc S. ;
Gerszten, Robert E. ;
Carr, Steven A. .
NATURE BIOTECHNOLOGY, 2011, 29 (07) :635-U119
[2]   Multi-site assessment of the precision and reproducibility of multiple reaction monitoring-based measurements of proteins in plasma [J].
Addona, Terri A. ;
Abbatiello, Susan E. ;
Schilling, Birgit ;
Skates, Steven J. ;
Mani, D. R. ;
Bunk, David M. ;
Spiegelman, Clifford H. ;
Zimmerman, Lisa J. ;
Ham, Amy-Joan L. ;
Keshishian, Hasmik ;
Hall, Steven C. ;
Allen, Simon ;
Blackman, Ronald K. ;
Borchers, Christoph H. ;
Buck, Charles ;
Cardasis, Helene L. ;
Cusack, Michael P. ;
Dodder, Nathan G. ;
Gibson, Bradford W. ;
Held, Jason M. ;
Hiltke, Tara ;
Jackson, Angela ;
Johansen, Eric B. ;
Kinsinger, Christopher R. ;
Li, Jing ;
Mesri, Mehdi ;
Neubert, Thomas A. ;
Niles, Richard K. ;
Pulsipher, Trenton C. ;
Ransohoff, David ;
Rodriguez, Henry ;
Rudnick, Paul A. ;
Smith, Derek ;
Tabb, David L. ;
Tegeler, Tony J. ;
Variyath, Asokan M. ;
Vega-Montoto, Lorenzo J. ;
Wahlander, Asa ;
Waldemarson, Sofia ;
Wang, Mu ;
Whiteaker, Jeffrey R. ;
Zhao, Lei ;
Anderson, N. Leigh ;
Fisher, Susan J. ;
Liebler, Daniel C. ;
Paulovich, Amanda G. ;
Regnier, Fred E. ;
Tempst, Paul ;
Carr, Steven A. .
NATURE BIOTECHNOLOGY, 2009, 27 (07) :633-U85
[3]  
[Anonymous], 2003, The Statistical Evaluation of Medical Tests for Classification and Prediction
[4]  
[Anonymous], STAT EVALUATION MED
[5]  
[Anonymous], 2012, EVOLUTION TRANSLATIO
[6]  
[Anonymous], 2013, APPL LOGISTIC REGRES
[7]   Identification of Multiple Novel Protein Biomarkers Shed by Human Serous Ovarian Tumors into the Blood of Immunocompromised Mice and Verified in Patient Sera [J].
Beer, Lynn A. ;
Wang, Huan ;
Tang, Hsin-Yao ;
Cao, Zhijun ;
Chang-Wong, Tony ;
Tanyi, Janos L. ;
Zhang, Rugang ;
Liu, Qin ;
Speicher, David W. .
PLOS ONE, 2013, 8 (03)
[8]   Feature-based prediction of non-classical and leaderless protein secretion [J].
Bendtsen, JD ;
Jensen, LJ ;
Blom, N ;
von Heijne, G ;
Brunak, S .
PROTEIN ENGINEERING DESIGN & SELECTION, 2004, 17 (04) :349-356
[9]   Improved prediction of signal peptides: SignalP 3.0 [J].
Bendtsen, JD ;
Nielsen, H ;
von Heijne, G ;
Brunak, S .
JOURNAL OF MOLECULAR BIOLOGY, 2004, 340 (04) :783-795
[10]   A Multiplexed Serum Biomarker Immunoassay Panel Discriminates Clinical Lung Cancer Patients from High-Risk Individuals Found to be Cancer-Free by CT Screening [J].
Bigbee, William L. ;
Gopalakrishnan, Vanathi ;
Weissfeld, Joel L. ;
Wilson, David O. ;
Dacic, Sanja ;
Lokshin, Anna E. ;
Siegfried, Jill M. .
JOURNAL OF THORACIC ONCOLOGY, 2012, 7 (04) :698-708