Identification of neural stem cells in the adult vertebrate brain

被引:328
作者
Alvarez-Buylla, A [1 ]
Seri, B [1 ]
Doetsch, F [1 ]
机构
[1] Univ Calif San Francisco, Brain Tumor Res Ctr, Dept Neurosurg Res, San Francisco, CA 94143 USA
关键词
neural progenitors; neurogenesis; plasticity; radial glia; astrocytes; glia;
D O I
10.1016/S0361-9230(01)00770-5
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Neurogenesis continues into adult life in restricted germinal layers. The identification of the neural stem cells that give rise to these new neurons has important clinical implications and provides fundamental information to understand the origins of the new neurons. Work in adult birds and rodents yielded a surprising result: the neural stem cells appear to have characteristics of glia. In adult birds, the primary neuronal precursors are radial glia. In adult mammals, the primary neuronal precursors have properties of astrocytes. Radial glial cells have previously been shown to transform into astrocytes; both cell types are classically considered part of a committed astroglial lineage. Instead, we propose that neural stem cells are contained within this astroglial lineage. These findings in adult vertebrate brain, together with recent work in the developing mammalian cerebral cortex, force us to reexamine traditional concepts about the origin of neurons and glia in the central nervous system. In particular, neural stem cells possess a surprisingly elaborate structure, suggesting that in addition to their progenitor role, they have important structural and metabolic support functions. The very same cells that give birth to new neurons also seem to nurture their maturation and support their function. (C) 2002 Elsevier Science Inc.
引用
收藏
页码:751 / 758
页数:8
相关论文
共 109 条
[1]  
Allen E, 1912, J COMP NEUROL, V22, P547
[2]   AUTORADIOGRAPHIC AND HISTOLOGICAL STUDIES OF POSTNATAL NEUROGENESIS .4. CELL PROLIFERATION AND MIGRATION IN ANTERIOR FOREBRAIN, WITH SPECIAL REFERENCE TO PERSISTING NEUROGENESIS IN OLFACTORY BULB [J].
ALTMAN, J .
JOURNAL OF COMPARATIVE NEUROLOGY, 1969, 137 (04) :433-&
[3]   AUTORADIOGRAPHIC AND HISTOLOGICAL EVIDENCE OF POSTNATAL HIPPOCAMPAL NEUROGENESIS IN RATS [J].
ALTMAN, J ;
DAS, GD .
JOURNAL OF COMPARATIVE NEUROLOGY, 1965, 124 (03) :319-&
[4]  
ALTMAN J, 1970, DEV NEUROBIOL, P197
[5]  
Alvarez-Buylla A, 1998, J NEUROSCI, V18, P1020
[6]   A unified hypothesis on the lineage of neural stem cells [J].
Alvarez-Buylla, A ;
García-Verdugo, JM ;
Tramontin, AD .
NATURE REVIEWS NEUROSCIENCE, 2001, 2 (04) :287-293
[7]   MIGRATION OF YOUNG NEURONS IN ADULT AVIAN BRAIN [J].
ALVAREZBUYLLA, A ;
NOTTEBOHM, F .
NATURE, 1988, 335 (6188) :353-354
[8]   PROLIFERATION HOT-SPOTS IN ADULT AVIAN VENTRICULAR ZONE REVEAL RADIAL CELL-DIVISION [J].
ALVAREZBUYLLA, A ;
THEELEN, M ;
NOTTEBOHM, F .
NEURON, 1990, 5 (01) :101-109
[9]   CONTRIBUTION OF NEURONS BORN DURING EMBRYONIC, JUVENILE, AND ADULT LIFE TO THE BRAIN OF ADULT CANARIES - REGIONAL SPECIFICITY AND DELAYED BIRTH OF NEURONS IN THE SONG-CONTROL NUCLEI [J].
ALVAREZBUYLLA, A ;
LING, CY ;
YU, WS .
JOURNAL OF COMPARATIVE NEUROLOGY, 1994, 347 (02) :233-248
[10]   BIRTH OF PROJECTION NEURONS IN ADULT AVIAN BRAIN MAY BE RELATED TO PERCEPTUAL OR MOTOR LEARNING [J].
ALVAREZBUYLLA, A ;
KIRN, JR ;
NOTTEBOHM, F .
SCIENCE, 1990, 249 (4975) :1444-1446