Autophagosome requires specific early Sec proteins for its formation and NSF/SNARE for vacuolar fusion

被引:297
作者
Ishihara, N
Hamasaki, M
Yokota, S
Suzuki, K
Kamada, Y
Kihara, A
Yoshimori, T
Noda, T
Ohsumi, Y [1 ]
机构
[1] Grad Univ Adv Studies, Dept Cell Biol, Natl Inst Basic Biol, Okazaki, Aichi 4448585, Japan
[2] Yamanashi Med Univ, Biol Program, Yamanashi 4093898, Japan
关键词
D O I
10.1091/mbc.12.11.3690
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Double membrane structure, autophagosome, is formed de novo in the process of autophagy in the yeast Saccharomyces cerevisiae, and many Apg, proteins participate in this process. To further understand autophagy, we analyzed the involvement of factors engaged in the secretory pathway. First, we showed that Sec18p (N-ethylmaleimide-sensitive fusion protein, NSF) and Vti1p (soluble N-ethylmaleimide-sensitive fusion protein attachment protein, SNARE), and soluble N-ethylmaleimide-sensitive fusion protein receptor are required for fusion of the autophagosome to the vacuole but are not involved in autophagosome formation. Second, Sec12p was shown to be essential for autophagy but not for the cytoplasm to vacuole-targeting (Cvt) (pathway, which shares mostly the same machinery with autophagy. Subcellular fractionation and electron microscopic analyses showed that Cvt vesicles,, but not autophagosomes, can be formed in sec12 cells. Three other coatmer protein (COPII) mutants, sec16, sec23, and sec24, were also defective in autophagy. The blockage of autophagy in these mutants was not dependent on transport from endoplasmic reticulum-to-Golgi, because mutations in two other COPII genes, SEC13 and SEC31, did not affect autophagy. These results demonstrate the requirement for subgroup of COPII proteins in autophagy. This evidence demonstrating the involvement of Sec proteins in the mechanism of autophagosome formation is crucial for understanding membrane flow during the process.
引用
收藏
页码:3690 / 3702
页数:13
相关论文
共 54 条
[1]   Cytoplasm to vacuole trafficking of aminopeptidase I requires a t-SNARE-Sec1p complex composed of Tlg2p and Vps45p [J].
Abeliovich, H ;
Darsow, T ;
Emr, SD .
EMBO JOURNAL, 1999, 18 (21) :6005-6016
[2]  
Adams A., 1997, METHODS YEAST GENETI
[3]   Two distinct pathways for targeting proteins from the cytoplasm to the vacuole/lysosome [J].
Baba, M ;
Osumi, M ;
Scott, SV ;
Klionsky, DJ ;
Ohsumi, Y .
JOURNAL OF CELL BIOLOGY, 1997, 139 (07) :1687-1695
[4]   ULTRASTRUCTURAL ANALYSIS OF THE AUTOPHAGIC PROCESS IN YEAST - DETECTION OF AUTOPHAGOSOMES AND THEIR CHARACTERIZATION [J].
BABA, M ;
TAKESHIGE, K ;
BABA, N ;
OHSUMI, Y .
JOURNAL OF CELL BIOLOGY, 1994, 124 (06) :903-913
[5]   COPII - A MEMBRANE COAT FORMED BY SEC PROTEINS THAT DRIVE VESICLE BUDDING FROM THE ENDOPLASMIC-RETICULUM [J].
BARLOWE, C ;
ORCI, L ;
YEUNG, T ;
HOSOBUCHI, M ;
HAMAMOTO, S ;
SALAMA, N ;
REXACH, MF ;
RAVAZZOLA, M ;
AMHERDT, M ;
SCHEKMAN, R .
CELL, 1994, 77 (06) :895-907
[6]   VESICULAR TRANSPORT BETWEEN THE ENDOPLASMIC-RETICULUM AND THE GOLGI STACK REQUIRES THE NEM-SENSITIVE FUSION PROTEIN [J].
BECKERS, CJM ;
BLOCK, MR ;
GLICK, BS ;
ROTHMAN, JE ;
BALCH, WE .
NATURE, 1989, 339 (6223) :397-398
[7]   A multispecificity syntaxin homologue, Vam3p, essential for autophagic and biosynthetic protein transport to the vacuole [J].
Darsow, T ;
Rieder, SE ;
Emr, SD .
JOURNAL OF CELL BIOLOGY, 1997, 138 (03) :517-529
[8]   STUDIES ON THE MECHANISMS OF AUTOPHAGY - FORMATION OF THE AUTOPHAGIC VACUOLE [J].
DUNN, WA .
JOURNAL OF CELL BIOLOGY, 1990, 110 (06) :1923-1933
[9]   YEAST SEC16 GENE ENCODES A MULTIDOMAIN VESICLE COAT PROTEIN THAT INTERACTS WITH SEC23P [J].
ESPENSHADE, P ;
GIMENO, RE ;
HOLZMACHER, E ;
TEUNG, P ;
KAISER, CA .
JOURNAL OF CELL BIOLOGY, 1995, 131 (02) :311-324
[10]   COMPARTMENTAL ORGANIZATION OF GOLGI-SPECIFIC PROTEIN MODIFICATION AND VACUOLAR PROTEIN SORTING EVENTS DEFINED IN A YEAST SEC18 (NSF) MUTANT [J].
GRAHAM, TR ;
EMR, SD .
JOURNAL OF CELL BIOLOGY, 1991, 114 (02) :207-218