Optimal scaling for various Metropolis-Hastings algorithms

被引:711
作者
Roberts, GO [1 ]
Rosenthal, JS
机构
[1] Univ Lancaster, Fylde Coll, Dept Math & Stat, Lancaster LA1 4YF, England
[2] Univ Toronto, Dept Stat, Toronto, ON M5S 3G3, Canada
关键词
adaptive triangulations; AIC; density estimation; extended linear models; finite elements; free knot splines; GCV; linear splines; multivariate splines; regression;
D O I
10.1214/ss/1015346320
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We review and extend results related to optimal scaling of Metropolis-Hastings algorithms. We present various theoretical results for the high-dimensional limit. We also present simulation studies which confirm the theoretical results in finite-dimensional contexts.
引用
收藏
页码:351 / 367
页数:17
相关论文
共 14 条
[1]  
Besag, 1994, J R STAT SOC B, V56, P591, DOI DOI 10.1111/J.2517-6161.1994.TB02000.X
[2]   From metropolis to diffusions: Gibbs states and optimal scaling [J].
Breyer, LA ;
Roberts, GO .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2000, 90 (02) :181-206
[3]  
Gelman A., 1996, BAYESIAN STAT, P599
[4]  
JARNER SF, 2001, CONVERGENCE HEAVY TA
[5]  
Kennedy A. D., 1991, Nuclear Physics B, Proceedings Supplements, V20, P118, DOI 10.1016/0920-5632(91)90893-J
[6]   WEAK CONVERGENCE AND OPTIMAL SCALING OF RANDOM WALK METROPOLIS ALGORITHMS [J].
Roberts, G. O. ;
Gelman, A. ;
Gilks, W. R. .
ANNALS OF APPLIED PROBABILITY, 1997, 7 (01) :110-120
[7]  
ROBERTS G. O., 1996, Bernoulli, V2, P341
[8]  
Roberts GarethO., 1998, STOCHASTICS STOCHAST, V62, P275, DOI [10.1080/17442509808834136, DOI 10.1080/17442509808834136]
[9]   Optimal scaling of discrete approximations to Langevin diffusions [J].
Roberts, GO ;
Rosenthal, JS .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1998, 60 :255-268
[10]  
ROBERTS GO, 2001, UNPUB OPTIMAL SCALIN