Extracellular signal-regulated protein kinase (ERK)-dependent and ERK-independent pathways target STAT3 on serine-727 in human neutrophils stimulated by chemotactic factors and cytokines

被引:76
作者
Kuroki, M [1 ]
O'Flaherty, JT [1 ]
机构
[1] Wake Forest Univ, Sch Med, Dept Internal Med, Infect Dis Sect, Winston Salem, NC 27157 USA
关键词
serine kinase; transcription factor; signal transduction;
D O I
10.1042/0264-6021:3410691
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
STAT3 (signal transducer and activator of transcription 3) is a latent transcription factor that is activated by tyrosine phosphorylation (Tyr-705) in cells stimulated with cytokines or growth factors. Recent studies suggest that one or more cytoplasmic serine kinases also phosphorylate STAT3 and are necessary for maximal gene activation. Here we demonstrate, with a site-specific antibody, that STAT3 is phosphorylated on Ser-727 in human neutrophils stimulated with chemotactic factors (N-formyl-methionyl-leucyl-phenylalanine and complement C5a), cytokines [granulocyte/macrophage colony-stimulating factor (GM-CSF) and granulocyte colony-stimulating factor (G-CSF)], or a protein kinase C activator (PMA). (2-Amino-3'-methoxyphenyl)oxanaphthalen-4-one (PD 98059), an inhibitor of extracellular signal-regulated protein kinase (ERK) activation, blocked the serine phosphorylation of STAT3 induced by chemotactic factors or PMA. The drug was less effective on cytokines: it virtually abolished the response to GM-CSF that occurred 5 min after stimulation but only partly decreased those at 15-30 min and did not appreciably alter responses to G-CSF regardless of incubation time, 1-(5-Iso-quinolinylsulphonyl)-2-methylpiperazine dihydrochloride (H7), an inhibitor of a putative STAT3 serine kinase, and 4-(4-fluorophenyl)-2-(4-methylsulphinylphenyl)-5-(4-pyridyl) 1H-imidazole (SB 203580), an inhibitor of p38 mitogen-activated protein (MAP) kinase, did not dampen any of these serine phosphorylation responses. We propose that neutrophils use both ERK-dependent and ERK-independent pathways to phosphorylate Ser-727 on STAT3. The former pathway is recruited by all ERK-activating stimuli, whereas the latter pathway uses an undefined serine kinase and is recruited selectively by cytokines.
引用
收藏
页码:691 / 695
页数:5
相关论文
共 35 条
[1]   Granulocyte-macrophage colony-stimulating factor-activated signaling pathways in human neutrophils - Selective activation of Jak2, Stat3, and Stat5B [J].
Al-Shami, A ;
Mahanna, W ;
Naccache, PH .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (02) :1058-1063
[2]   PD-098059 IS A SPECIFIC INHIBITOR OF THE ACTIVATION OF MITOGEN-ACTIVATED PROTEIN-KINASE KINASE IN-VITRO AND IN-VIVO [J].
ALESSI, DR ;
CUENDA, A ;
COHEN, P ;
DUDLEY, DT ;
SALTIEL, AR .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (46) :27489-27494
[3]  
BHAT GJ, 1994, J BIOL CHEM, V269, P31443
[4]   Angiotensin II interferes with interleukin 6-induced Stat3 signaling by a pathway involving mitogen-activated protein kinase kinase 1 [J].
Bhat, GJ ;
Abraham, ST ;
Baker, KM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (37) :22447-22452
[5]   STAT3 ACTIVATION BY CYTOKINES UTILIZING GP130 AND RELATED TRANSDUCERS INVOLVES A SECONDARY MODIFICATION REQUIRING AN H7-SENSITIVE KINASE [J].
BOULTON, TG ;
ZHONG, Z ;
WEN, ZL ;
DARNELL, JE ;
STAHL, N ;
YANCOPOULOS, GD .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (15) :6915-6919
[6]  
BOVOLENTA C, 1998, FEBS LETT, V389, P239
[7]   THE PRODUCTION OF CYTOKINES BY POLYMORPHONUCLEAR NEUTROPHILS [J].
CASSATELLA, MA .
IMMUNOLOGY TODAY, 1995, 16 (01) :21-26
[8]   Insulin stimulates the serine phosphorylation of the signal transducer and activator of transcription (STAT3) isoform [J].
Ceresa, BP ;
Pessin, JE .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (21) :12121-12124
[9]   STAT3 serine phosphorylation by ERK-dependent and -independent pathways negatively modulates its tyrosine phosphorylation [J].
Chung, JK ;
Uchida, E ;
Grammer, TC ;
Blenis, J .
MOLECULAR AND CELLULAR BIOLOGY, 1997, 17 (11) :6508-6516
[10]  
Coffer PJ, 1998, BIOCHEM J, V329, P121