Bootstrap-based improvements for inference with clustered errors

被引:2388
作者
Cameron, A. Colin [1 ]
Gelbach, Jonah B. [2 ]
Miller, Douglas L. [1 ]
机构
[1] Univ Calif Davis, Dept Econ, Davis, CA 95616 USA
[2] Univ Arizona, Dept Econ, Tucson, AZ 85721 USA
关键词
D O I
10.1162/rest.90.3.414
中图分类号
F [经济];
学科分类号
02 ;
摘要
Researchers have increasingly realized the need to account for within-group dependence in estimating standard errors of regression parameter estimates. The usual solution is to calculate cluster-robust standard errors that permit heteroskedasticity and within-cluster error correlation. but presume that the number of clusters is large. Standard asymptotic tests can over-reject, however, with few (five to thirty) clusters. We investigate inference using cluster bootstrap-t procedures that provide asymptotic refinement. These procedures are evaluated using Monte Carlos, including the example of Bertrand, Duflo, and Mullai-nathan (2004). Rejection rates of 10% using standard methods can be reduced to the nominal size of 5% using our methods.
引用
收藏
页码:414 / 427
页数:14
相关论文
共 38 条
[1]  
ANGRIST J, 2002, 9389 NBER
[2]  
[Anonymous], ADV EC ECONOMETRICS
[3]  
ARELLANO M, 1987, OXFORD B ECON STAT, V49, P431
[4]  
Bell R.M., 2002, Survey Methodology, V28, P169
[5]   How much should we trust differences-in-differences estimates? [J].
Bertrand, M ;
Duflo, E ;
Mullainathan, S .
QUARTERLY JOURNAL OF ECONOMICS, 2004, 119 (01) :249-275
[6]   The bootstrain and multiple imputations: Harnessing increased computing power for improved statistical tests [J].
Brownstone, D ;
Valletta, R .
JOURNAL OF ECONOMIC PERSPECTIVES, 2001, 15 (04) :129-141
[7]  
Cameron A.C., 2005, MICROECONOMETRICS ME, DOI DOI 10.1017/CBO9780511811241
[8]  
CAMERON AC, 2006, 0621 UC DAV
[9]  
Davidson AC., 1997, BOOTSTRAP METHODS TH, DOI [DOI 10.1017/CBO9780511802843, 10.1017/CBO9780511802843]
[10]  
Davidson R, 1999, ECONOMET THEOR, V15, P361