The oxyhemoglobin reaction of nitric oxide

被引:354
作者
Gow, AJ
Luchsinger, BP
Pawloski, JR
Singel, DJ
Stamler, JS
机构
[1] Duke Univ, Med Ctr, Howard Hughes Med Inst, Durham, NC 27710 USA
[2] Duke Univ, Med Ctr, Dept Med, Durham, NC 27710 USA
[3] Montana State Univ, Dept Chem & Biochem, Bozeman, MT 59717 USA
[4] Duke Univ, Dept Cell Biol, Durham, NC 27710 USA
关键词
D O I
10.1073/pnas.96.16.9027
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The oxidation of nitric oxide (NO) to nitrate by oxyhemoglobin is a fundamental reaction that shapes our understanding of NO biology. This reaction is considered to be the major pathway for NO elimination from the body; it is the basis for a prevalent NO assay; it is a critical feature in the modeling of NO diffusion in the circulatory system; and it informs a variety of therapeutic applications, including NO-inhalation therapy and blood substitute design. Here we show that, under physiological conditions, this reaction is of little significance. Instead, NO preferentially binds to the minor population of the hemoglobin's vacant hemes in a cooperative manner, nitrosylates hemoglobin thiols, or reacts with liberated superoxide in solution. In the red blood cell, superoxide dismutase eliminates superoxide, increasing the yield of S-nitrosohemoglobin and nitrosylated hemes, Hemoglobin thus serves to regulate the chemistry of NO and maintain it in a bioactive state. These results represent a reversal of the conventional view of hemoglobin in NO biology and motivate a reconsideration of fundamental issues in NO biochemistry and therapy.
引用
收藏
页码:9027 / 9032
页数:6
相关论文
共 39 条
[1]   HEMOGLOBIN AND FREE-RADICALS - IMPLICATIONS FOR THE DEVELOPMENT OF A SAFE BLOOD SUBSTITUTE [J].
ALAYASH, AI ;
CASHON, RE .
MOLECULAR MEDICINE TODAY, 1995, 1 (03) :122-127
[2]  
Antonini E., 1971, FRONT BIOL, P13
[3]   CONFORMATION, CO-OPERATIVITY AND LIGAND-BINDING IN HUMAN HEMOGLOBIN [J].
CASSOLY, R ;
GIBSON, QH .
JOURNAL OF MOLECULAR BIOLOGY, 1975, 91 (03) :301-313
[4]   Whole body nitric oxide synthesis in healthy men determined from [N-15]arginine-to-[N-15]citrulline labeling [J].
Castillo, L ;
Beaumier, L ;
Ajami, AM ;
Young, VR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (21) :11460-11465
[5]   Rate of reaction with nitric oxide determines the hypertensive effect of cell-free hemoglobin [J].
Doherty, DH ;
Doyle, MP ;
Curry, SR ;
Vali, RJ ;
Fattor, TJ ;
Olson, JS ;
Lemon, DD .
NATURE BIOTECHNOLOGY, 1998, 16 (07) :672-676
[6]   OXIDATION OF NITROGEN-OXIDES BY BOUND DIOXYGEN IN HEMOPROTEINS [J].
DOYLE, MP ;
HOEKSTRA, JW .
JOURNAL OF INORGANIC BIOCHEMISTRY, 1981, 14 (04) :351-358
[7]   Mechanism of NO-induced oxidation of myoglobin and hemoglobin [J].
Eich, RF ;
Li, TS ;
Lemon, DD ;
Doherty, DH ;
Curry, SR ;
Aitken, JF ;
Mathews, AJ ;
Johnson, KA ;
Smith, RD ;
Phillips, GN ;
Olson, JS .
BIOCHEMISTRY, 1996, 35 (22) :6976-6983
[8]  
Feelisch M, 1996, OXYHEMOGLOBIN ASSAY, P455
[9]   Inhaled NO as a viable antiadhesive therapy for ischemia/reperfusion injury of distal microvascular beds [J].
Fox-Robichaud, A ;
Payne, D ;
Hasan, SU ;
Ostrovsky, L ;
Fairhead, T ;
Reinhardt, P ;
Kubes, P .
JOURNAL OF CLINICAL INVESTIGATION, 1998, 101 (11) :2497-2505
[10]   Nitric oxide dioxygenase: An enzymic function for flavohemoglobin [J].
Gardner, PR ;
Gardner, AM ;
Martin, LA ;
Salzman, AL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (18) :10378-10383