Markov properties of cluster processes

被引:25
作者
Baddeley, AJ
VanLieshout, MNM
Moller, J
机构
[1] UNIV WARWICK,DEPT STAT,COVENTRY CV4 7AL,W MIDLANDS,ENGLAND
[2] LEIDEN UNIV,2300 RA LEIDEN,NETHERLANDS
[3] UNIV AARHUS,DK-8200 AARHUS,DENMARK
关键词
Markov point process; nearest-neighbour Markov process; cluster process; connected component relation;
D O I
10.2307/1428060
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We show that a Poisson cluster point process is a nearest-neighbour Markov point process [2] if the clusters have uniformly bounded diameter. It is typically not a finite-range Markov point process in the sense of Ripley and Kelly [12]. Furthermore, when the parent Poisson process is replaced by a Markov or nearest-neighbour Markov point process, the resulting cluster process is also nearest-neighbour Markov, provided all clusters are non-empty. in particular, the nearest-neighbour Markov property is preserved when points of the process are independently randomly translated, but not when they are randomly thinned.
引用
收藏
页码:346 / 355
页数:10
相关论文
共 13 条
[1]  
[Anonymous], SPATIAL STAT PAST PR
[2]   NEAREST-NEIGHBOUR MARKOV POINT-PROCESSES AND RANDOM SETS [J].
BADDELEY, A ;
MOLLER, J .
INTERNATIONAL STATISTICAL REVIEW, 1989, 57 (02) :89-121
[3]  
BADDELEY AJ, 1996, IN PRESS STATIST NEE
[4]   EXPONENTIAL SPACES AND COUNTING PROCESSES [J].
CARTER, DS ;
PRENTER, PM .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1972, 21 (01) :1-&
[5]   ON PARAMETER-ESTIMATION FOR PAIRWISE INTERACTION POINT-PROCESSES [J].
DIGGLE, PJ ;
FIKSEL, T ;
GRABARNIK, P ;
OGATA, Y ;
STOYAN, D ;
TANEMURA, M .
INTERNATIONAL STATISTICAL REVIEW, 1994, 62 (01) :99-117
[6]  
KENDALL WS, 1990, J APPL PROBAB, V28, P767
[7]   REMARKS ON SPATIAL-DISTRIBUTION OF A REPRODUCING POPULATION [J].
KINGMAN, JFC .
JOURNAL OF APPLIED PROBABILITY, 1977, 14 (03) :577-583
[8]  
MOLLER J, 1994, SCAND J STAT, V21, P346
[9]  
MOLLER J, 1994, P SEM EUR STAT TOUL
[10]  
Preston C., 1976, RANDOM FIELDS, DOI 10.1007/BFb0080563