Transverse instability for non-normal parameters

被引:54
作者
Ashwin, P [1 ]
Covas, E
Tavakol, R
机构
[1] Univ Surrey, Dept Math & Comp Sci, Guildford GU2 5XH, Surrey, England
[2] Univ London Queen Mary & Westfield Coll, Sch Math Sci, Astron Unit, London E1 4NS, England
关键词
D O I
10.1088/0951-7715/12/3/009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the behaviour of attractors near invariant subspaces on varying a parameter that changes the dynamics in the invariant subspace of a dynamical system. We refer to such a parameter as 'non-normal'. In the presence of chaos that is fragile, we find blowout bifurcations that are blurred over a range of parameter values. We demonstrate that this can occur on a set of positive measure in the parameter space. Under an assumption that the dynamics is not of skew product form, these blowout bifurcations can create attractors displaying 'in-out intermittency', a generalized form of on-off intermittency. We characterize in-out intermittency both in terms of its structure in phase space and statistically by means of a Markov model. We discuss some other dynamical and bifurcation effects associated with non-normal parameters, in particular non-normal bifurcation to riddled basins and transition between on-off and in-out intermittency.
引用
收藏
页码:563 / 577
页数:15
相关论文
共 32 条
[1]   RIDDLED BASINS [J].
Alexander, J. C. ;
Yorke, James A. ;
You, Zhiping ;
Kan, I. .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1992, 2 (04) :795-813
[2]  
Arnold L., 1994, RANDOM COMPUTATIONAL, V2, P335
[3]   Attractors stuck on to invariant subspaces [J].
Ashwin, P .
PHYSICS LETTERS A, 1995, 209 (5-6) :338-344
[4]   On the unfolding of a blowout bifurcation [J].
Ashwin, P ;
Aston, PJ ;
Nicol, M .
PHYSICA D, 1998, 111 (1-4) :81-95
[5]   BUBBLING OF ATTRACTORS AND SYNCHRONIZATION OF CHAOTIC OSCILLATORS [J].
ASHWIN, P ;
BUESCU, J ;
STEWART, I .
PHYSICS LETTERS A, 1994, 193 (02) :126-139
[6]   From attractor to chaotic saddle: A tale of transverse instability [J].
Ashwin, P ;
Buescu, J ;
Stewart, I .
NONLINEARITY, 1996, 9 (03) :703-737
[7]  
ASHWIN P, 1997, 9726 U SURR DEP MATH
[8]   From high dimensional chaos to stable periodic orbits: The structure of parameter space [J].
Barreto, E ;
Hunt, BR ;
Grebogi, C ;
Yorke, JA .
PHYSICAL REVIEW LETTERS, 1997, 78 (24) :4561-4564
[9]   THE DYNAMICS OF THE HENON MAP [J].
BENEDICKS, M ;
CARLESON, L .
ANNALS OF MATHEMATICS, 1991, 133 (01) :73-169
[10]  
Brooke JM, 1998, ASTRON ASTROPHYS, V332, P339