The Askey-Wilson polynomials and q-Sturm-Liouville problems

被引:23
作者
Brown, BM
Evans, WD
Ismail, MEH
机构
[1] UNIV WALES COLL CARDIFF,SCH MATH,CARDIFF CF4 2YN,S GLAM,WALES
[2] UNIV S FLORIDA,DEPT MATH,TAMPA,FL 33620
关键词
D O I
10.1017/S0305004100073916
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We find the adjoint of the Askey-Wilson divided difference operator with respect to the inner product on L(2)(-1, 1, (1-x(2))(-1/2)dx) defined as a Cauchy principal value and show that the Askey-Wilson polynomials are solutions of a q-Sturm-Liouville problem. From these facts we deduce various properties of the polynomials in a simple and straightforward way. We also provide an operator theoretic description of the Askey-Wilson operator.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 18 条
[1]  
Andrews G.E., 1986, CBMS REGIONAL C SERI, V66
[2]  
ANDREWS GE, 1978, AEQUATIONES MATH, V18, P333
[3]  
Askey R, 1985, MEMOIRS AM MATH SOC, V319
[4]   ON THE ASKEY-WILSON POLYNOMIALS [J].
ATAKISHIYEV, NM ;
SUSLOV, SK .
CONSTRUCTIVE APPROXIMATION, 1992, 8 (03) :363-369
[5]  
Gasper G., 1990, Basic Hypergeometric Series
[6]   THE COMBINATORICS OF Q-HERMITE POLYNOMIALS AND THE ASKEY-WILSON INTEGRAL [J].
ISMAIL, MEH ;
STANTON, D ;
VIENNOT, G .
EUROPEAN JOURNAL OF COMBINATORICS, 1987, 8 (04) :379-392
[7]   ON THE ASKEY-WILSON AND ROGERS POLYNOMIALS [J].
ISMAIL, MEH ;
STANTON, D .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1988, 40 (05) :1025-1045
[8]  
ISMAIL MEH, 1977, P AM MATH SOC, V63, P185
[9]   SYMMETRY TECHNIQUES FOR Q-SERIES - ASKEY-WILSON POLYNOMIALS [J].
KALNINS, EG ;
MILLER, W .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1989, 19 (01) :223-230
[10]  
MAGNUS AP, 1988, LECT NOTES MATH, V1329, P261