Mesh smoothing using a posteriori error estimates

被引:107
作者
Bank, RE [1 ]
Smith, RK [1 ]
机构
[1] AT&T BELL LABS,MURRAY HILL,NJ 07974
关键词
moving finite elements; adaptive refinement; a posteriori error estimates;
D O I
10.1137/S0036142994265292
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We develop a simple mesh-smoothing algorithm for adaptively improving finite-element triangulations. The algorithm makes use of a posteriori error estimates which are now widely used in finite-element calculations. In this paper we derive the method, present some numerical illustrations, and give a brief analysis of the issue of uniqueness.
引用
收藏
页码:979 / 997
页数:19
相关论文
共 26 条
[1]   2ND-ORDER FINITE-ELEMENT APPROXIMATIONS AND A POSTERIORI ERROR ESTIMATION FOR TWO-DIMENSIONAL PARABOLIC-SYSTEMS [J].
ADJERID, S ;
FLAHERTY, JE .
NUMERISCHE MATHEMATIK, 1988, 53 (1-2) :183-198
[2]   A LOCAL REFINEMENT FINITE-ELEMENT METHOD FOR TWO-DIMENSIONAL PARABOLIC-SYSTEMS [J].
ADJERID, S ;
FLAHERTY, JE .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1988, 9 (05) :792-811
[3]   A MOVING FINITE-ELEMENT METHOD WITH ERROR ESTIMATION AND REFINEMENT FOR ONE-DIMENSIONAL TIME-DEPENDENT PARTIAL-DIFFERENTIAL EQUATIONS [J].
ADJERID, S ;
FLAHERTY, JE .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1986, 23 (04) :778-796
[4]  
[Anonymous], FRONTIERS APPL MATH
[5]  
[Anonymous], 1983, Adaptive computational methods for partial differential equations
[6]   AN ADAPTIVE MESH-MOVING AND LOCAL REFINEMENT METHOD FOR TIME-DEPENDENT PARTIAL-DIFFERENTIAL EQUATIONS [J].
ARNEY, DC ;
FLAHERTY, JE .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1990, 16 (01) :48-71
[7]  
BABUSKA I, 1986, ACCURACY ESTIMATES A
[8]   A POSTERIORI ERROR-ESTIMATES BASED ON HIERARCHICAL BASES [J].
BANK, RE ;
SMITH, RK .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1993, 30 (04) :921-935
[9]  
BANK RE, 1985, MATH COMPUT, V44, P283, DOI 10.1090/S0025-5718-1985-0777265-X
[10]  
BANK RE, 1986, ACCURACY ESTIMATES A, P119