High-level semi-synthetic production of the potent antimalarial artemisinin

被引:1603
作者
Paddon, C. J. [1 ]
Westfall, P. J. [1 ]
Pitera, D. J. [1 ]
Benjamin, K. [1 ]
Fisher, K. [1 ]
McPhee, D. [1 ]
Leavell, M. D. [1 ]
Tai, A. [1 ]
Main, A. [1 ]
Eng, D. [1 ]
Polichuk, D. R. [2 ]
Teoh, K. H. [2 ]
Reed, D. W. [2 ]
Treynor, T. [1 ]
Lenihan, J. [1 ]
Fleck, M. [1 ]
Bajad, S. [1 ]
Dang, G. [1 ]
Dengrove, D. [1 ]
Diola, D. [1 ]
Dorin, G. [1 ]
Ellens, K. W. [2 ]
Fickes, S. [1 ]
Galazzo, J. [1 ]
Gaucher, S. P. [1 ]
Geistlinger, T. [1 ]
Henry, R. [1 ]
Hepp, M. [2 ]
Horning, T. [1 ]
Iqbal, T. [1 ]
Jiang, H. [1 ]
Kizer, L. [1 ]
Lieu, B. [1 ]
Melis, D. [1 ]
Moss, N. [1 ]
Regentin, R. [1 ]
Secrest, S. [1 ]
Tsuruta, H. [1 ]
Vazquez, R. [1 ]
Westblade, L. F. [1 ]
Xu, L. [1 ]
Yu, M. [1 ]
Zhang, Y. [2 ]
Zhao, L. [1 ]
Lievense, J. [1 ]
Covello, P. S. [2 ]
Keasling, J. D. [3 ,4 ,5 ,6 ]
Reiling, K. K. [1 ]
Renninger, N. S. [1 ]
Newman, J. D. [1 ]
机构
[1] Amyris Inc, Emeryville, CA 94608 USA
[2] Natl Res Council Canada, Saskatoon, SK S7N 0W9, Canada
[3] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA
[4] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA
[5] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA
[6] Joint BioEnergy Inst, Emeryville, CA 94608 USA
关键词
SACCHAROMYCES-CEREVISIAE; DIHYDROARTEMISINIC ACID; MOLECULAR-CLONING; DRUG ARTEMISININ; GENE DISRUPTION; CYTOCHROME B(5); BIOSYNTHESIS; ANNUA; REDUCTASE; YEAST;
D O I
10.1038/nature12051
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In 2010 there were more than 200 million cases of malaria, and at least 655,000 deaths(1). The World Health Organization has recommended artemisinin-based combination therapies (ACTs) for the treatment of uncomplicated malaria caused by the parasite Plasmodium falciparum. Artemisinin is a sesquiterpene endoperoxide with potent antimalarial properties, produced by the plant Artemisia annua. However, the supply of plant-derived artemisinin is unstable, resulting in shortages and price fluctuations, complicating production planning by ACT manufacturers(2). A stable source of affordable artemisinin is required. Here we use synthetic biology to develop strains of Saccharomyces cerevisiae (baker's yeast) for high-yielding biological production of artemisinic acid, a precursor of artemisinin. Previous attempts to produce commercially relevant concentrations of artemisinic acid were unsuccessful, allowing production of only 1.6 grams per litre of artemisinic acid(3). Here we demonstrate the complete biosynthetic pathway, including the discovery of a plant dehydrogenase and a second cytochrome that provide an efficient biosynthetic route to artemisinic acid, with fermentation titres of 25 grams per litre of artemisinic acid. Furthermore, we have developed a practical, efficient and scalable chemical process for the conversion of artemisinic acid to artemisinin using a chemical source of singlet oxygen, thus avoiding the need for specialized photochemical equipment. The strains and processes described here form the basis of a viable industrial process for the production of semi-synthetic artemisinin to stabilize the supply of artemisinin for derivatization into active pharmaceutical ingredients (for example, artesunate) for incorporation into ACTs. Because all intellectual property rights have been provided free of charge, this technology has the potential to increase provision of first-line antimalarial treatments to the developing world at a reduced average annual price.
引用
收藏
页码:528 / +
页数:9
相关论文
共 30 条
[1]  
[Anonymous], INORG CHEM
[2]  
[Anonymous], MED CHEM BIOACTIVE N, DOI DOI 10.1002/0471739340.CH5
[3]   Production of plant Sesquiterpenes in Saccharomyces cerevisiae:: Effect of ERG9 repression on sesquiterpene biosynthesis [J].
Asadollahi, Mohammad A. ;
Maury, Jerome ;
Moller, Kasper ;
Nielsen, Kristian Fog ;
Schalk, Michel ;
Clark, Anthony ;
Nielsen, Jens .
BIOTECHNOLOGY AND BIOENGINEERING, 2008, 99 (03) :666-677
[4]   Identification of intermediates and enzymes involved in the early steps of artemisinin biosynthesis in Artemisia annua [J].
Bertea, CM ;
Freije, JR ;
van der Woude, H ;
Verstappen, FWA ;
Perk, L ;
Marquez, V ;
De Kraker, JW ;
Posthumus, MA ;
Jansen, BJM ;
de Groot, A ;
Franssen, MCR ;
Bouwmeester, HJ .
PLANTA MEDICA, 2005, 71 (01) :40-47
[5]   Partitioning bioreactors [J].
Daugulis, AJ .
CURRENT OPINION IN BIOTECHNOLOGY, 1997, 8 (02) :169-174
[6]  
Goldstein AL, 1999, YEAST, V15, P1541, DOI 10.1002/(SICI)1097-0061(199910)15:14<1541::AID-YEA476>3.0.CO
[7]  
2-K
[8]   The Genetic Map of Artemisia annua L. Identifies Loci Affecting Yield of the Antimalarial Drug Artemisinin [J].
Graham, Ian A. ;
Besser, Katrin ;
Blumer, Susan ;
Branigan, Caroline A. ;
Czechowski, Tomasz ;
Elias, Luisa ;
Guterman, Inna ;
Harvey, David ;
Isaac, Peter G. ;
Khan, Awais M. ;
Larson, Tony R. ;
Li, Yi ;
Pawson, Tanya ;
Penfield, Teresa ;
Rae, Anne M. ;
Rathbone, Deborah A. ;
Reid, Sonja ;
Ross, Joe ;
Smallwood, Margaret F. ;
Segura, Vincent ;
Townsend, Theresa ;
Vyas, Darshna ;
Winzer, Thilo ;
Bowles, Dianna .
SCIENCE, 2010, 327 (5963) :328-331
[9]   Microbially derived artemisnin: A biotechnology solution to the global problem of access to affordable antimalarial drugs [J].
Hale, Victoria ;
Keasling, Jay D. ;
Renninger, Neil ;
Diagana, Thierry T. .
AMERICAN JOURNAL OF TROPICAL MEDICINE AND HYGIENE, 2007, 77 (06) :198-202
[10]   From artemisinin to new artemisinin antimalarials: Biosynthesis, extraction, old and new derivatives, stereochemistry and medicinal chemistry requirements [J].
Haynes, Richard K. .
CURRENT TOPICS IN MEDICINAL CHEMISTRY, 2006, 6 (05) :509-537