The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation

被引:2269
作者
Chen, JF
Mandel, EM
Thomson, JM
Wu, QL
Callis, TE
Hammond, SM
Conlon, FL
Wang, DZ [1 ]
机构
[1] Univ N Carolina, Carolina Cardiovasc Biol Ctr, Chapel Hill, NC 27599 USA
[2] Univ N Carolina, Dept Cell & Dev Biol, Chapel Hill, NC 27599 USA
[3] Univ N Carolina, Dept Biol, Chapel Hill, NC 27599 USA
[4] Univ N Carolina, Dept Genet, Chapel Hill, NC 27599 USA
关键词
D O I
10.1038/ng1725
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Understanding the molecular mechanisms that regulate cellular proliferation and differentiation is a central theme of developmental biology. MicroRNAs ( miRNAs) are a class of regulatory RNAs of similar to 22 nucleotides that post-transcriptionally regulate gene expression(1,2). Increasing evidence points to the potential role of miRNAs in various biological processes(3-8). Here we show that miRNA-1 (miR-1) and miRNA- 133 (miR-133), which are clustered on the same chromosomal loci, are transcribed together in a tissue-specific manner during development. miR-1 and miR-133 have distinct roles in modulating skeletal muscle proliferation and differentiation in cultured myoblasts in vitro and in Xenopus laevis embryos in vivo. miR-1 promotes myogenesis by targeting histone deacetylase 4 (HDAC4), a transcriptional repressor of muscle gene expression. By contrast, miR-133 enhances myoblast proliferation by repressing serum response factor (SRF). Our results show that two mature miRNAs, derived from the same miRNA polycistron and transcribed together, can carry out distinct biological functions. Together, our studies suggest a molecular mechanism in which miRNAs participate in transcriptional circuits that control skeletal muscle gene expression and embryonic development.
引用
收藏
页码:228 / 233
页数:6
相关论文
共 30 条
[1]   The functions of animal microRNAs [J].
Ambros, V .
NATURE, 2004, 431 (7006) :350-355
[2]   MicroRNAs: Genomics, biogenesis, mechanism, and function (Reprinted from Cell, vol 116, pg 281-297, 2004) [J].
Bartel, David P. .
CELL, 2007, 131 (04) :11-29
[3]   PLASTICITY OF THE DIFFERENTIATED STATE [J].
BLAU, HM ;
PAVLATH, GK ;
HARDEMAN, EC ;
CHIU, CP ;
SILBERSTEIN, L ;
WEBSTER, SG ;
MILLER, SC ;
WEBSTER, C .
SCIENCE, 1985, 230 (4727) :758-766
[4]   Tbx5 and Tbx20 act synergistically to control vertebrate heart morphogenesis [J].
Brown, DD ;
Martz, SN ;
Binder, O ;
Goetz, SC ;
Price, BMJ ;
Smith, JC ;
Conlon, FL .
DEVELOPMENT, 2005, 132 (03) :553-563
[5]   Modulation of smooth muscle gene expression by association of histone acetyltransferases and deacetylases with myocardin [J].
Cao, DS ;
Wang, ZG ;
Zhang, CL ;
Oh, J ;
Xing, WB ;
Li, SJ ;
Richardson, JA ;
Wang, DZ ;
Olson, EN .
MOLECULAR AND CELLULAR BIOLOGY, 2005, 25 (01) :364-376
[6]   MicroRNAs modulate hematopoietic lineage differentiation [J].
Chen, CZ ;
Li, L ;
Lodish, HF ;
Bartel, DP .
SCIENCE, 2004, 303 (5654) :83-86
[7]  
Conlon FL, 1996, DEVELOPMENT, V122, P2427
[8]   MicroRNAs regulate brain morphogenesis in zebrafish [J].
Giraldez, AJ ;
Cinalli, RM ;
Glasner, ME ;
Enright, AJ ;
Thomson, JM ;
Baskerville, S ;
Hammond, SM ;
Bartel, DP ;
Schier, AF .
SCIENCE, 2005, 308 (5723) :833-838
[9]   A microRNA polycistron as a potential human oncogene [J].
He, L ;
Thomson, JM ;
Hemann, MT ;
Hernando-Monge, E ;
Mu, D ;
Goodson, S ;
Powers, S ;
Cordon-Cardo, C ;
Lowe, SW ;
Hannon, GJ ;
Hammond, SM .
NATURE, 2005, 435 (7043) :828-833
[10]   Sequence-specific inhibition of small RNA function [J].
Hutvágner, G ;
Simard, MJ ;
Mello, CC ;
Zamore, PD .
PLOS BIOLOGY, 2004, 2 (04) :465-475