Continuous and widespread roles for the Swi-Snf complex in transcription

被引:98
作者
Biggar, SR
Crabtree, GR [1 ]
机构
[1] Stanford Univ, Sch Med, Dept Dev Biol, Stanford, CA 94305 USA
[2] Stanford Univ, Sch Med, Dept Pathol, Stanford, CA 94305 USA
关键词
chromatin remodeling; GAL1; Gcn5; histone acetylation; Swi-Snf;
D O I
10.1093/emboj/18.8.2254
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Chromatin presents a significant obstacle to transcription, but two means of overcoming its repressive effects, histone acetylation and the activities of the Swi-Snf complex, have been proposed. Histone acetylation and Swi-Snf activity have been shown to be crucial for transcriptional induction and to facilitate binding of transcription factors to DNA, By regulating the activity of the Swi-Snf complex in vivo, we found that active transcription requires continuous Swi-Snf function, demonstrating a role for this complex beyond the induction of transcription. Despite the presumably generalized packaging of genes into chromatin, previous studies have indicated that the transcriptional requirements for the histone acetyltransferase, Gcn5, and the Swi-Snf complex are limited to a handful of genes. However, inactivating Swi-Snf function in cells also lacking GCN5 revealed defects in transcription of several genes previously thought to be SWI-SNF and GCN5-independent. These findings suggest that chromatin remodeling plays a widespread role in gene expression and that these two chromatin remodeling activities perform independent and overlapping functions during transcriptional activation.
引用
收藏
页码:2254 / 2264
页数:11
相关论文
共 69 条
[1]   REMOVAL OF POSITIONED NUCLEOSOMES FROM THE YEAST PHO5 PROMOTER UPON PHO5 INDUCTION RELEASES ADDITIONAL UPSTREAM ACTIVATING DNA ELEMENTS [J].
ALMER, A ;
RUDOLPH, H ;
HINNEN, A ;
HORZ, W .
EMBO JOURNAL, 1986, 5 (10) :2689-2696
[2]  
[Anonymous], 1991, Methods Enzymol, V194, P1
[3]   GAL4 DISRUPTS A REPRESSING NUCLEOSOME DURING ACTIVATION OF GAL1 TRANSCRIPTION INVIVO [J].
AXELROD, JD ;
REAGAN, MS ;
MAJORS, J .
GENES & DEVELOPMENT, 1993, 7 (05) :857-869
[4]   GENETIC ISOLATION OF ADA2 - A POTENTIAL TRANSCRIPTIONAL ADAPTER REQUIRED FOR FUNCTION OF CERTAIN ACIDIC ACTIVATION DOMAINS [J].
BERGER, SL ;
PINA, B ;
SILVERMAN, N ;
MARCUS, GA ;
AGAPITE, J ;
REGIER, JL ;
TRIEZENBERG, SJ ;
GUARENTE, L .
CELL, 1992, 70 (02) :251-265
[5]   Tetrahymena histone acetyltransferase A: A homolog to yeast Gcn5p linking histone acetylation to gene activation [J].
Brownell, JE ;
Zhou, JX ;
Ranalli, T ;
Kobayashi, R ;
Edmondson, DG ;
Roth, SY ;
Allis, CD .
CELL, 1996, 84 (06) :843-851
[6]   The yeast SWI-SNF complex facilitates binding of a transcriptional activator to nucleosomal sites in vivo [J].
Burns, LG ;
Peterson, CL .
MOLECULAR AND CELLULAR BIOLOGY, 1997, 17 (08) :4811-4819
[7]   RSC, an essential, abundant chromatin-remodeling complex [J].
Cairns, BR ;
Lorch, Y ;
Li, Y ;
Zhang, MC ;
Lacomis, L ;
ErdjumentBromage, H ;
Tempst, P ;
Du, J ;
Laurent, B ;
Kornberg, RD .
CELL, 1996, 87 (07) :1249-1260
[8]   Histone acetyltransferase activity and interaction with ADA2 are critical for GCN5 function in vivo [J].
Candau, R ;
Zhou, JX ;
Allis, CD ;
Berger, SL .
EMBO JOURNAL, 1997, 16 (03) :555-565
[9]   2 DIFFERENTIALLY REGULATED MESSENGER-RNAS WITH DIFFERENT 5' ENDS ENCODE SECRETED AND INTRACELLULAR FORMS OF YEAST INVERTASE [J].
CARLSON, M ;
BOTSTEIN, D .
CELL, 1982, 28 (01) :145-154
[10]   Genetic analysis of glucose regulation in Saccharomyces cerevisiae: Control of transcription versus mRNA turnover [J].
Cereghino, GP ;
Scheffler, IE .
EMBO JOURNAL, 1996, 15 (02) :363-374