Cx40 and Cx43 expression ratio influences heteromeric/heterotypic gap junction channel properties

被引:74
作者
Cottrell, GT [1 ]
Wu, Y [1 ]
Burt, JM [1 ]
机构
[1] Univ Arizona, Arizona Hlth Sci Ctr, Dept Physiol, Tucson, AZ 85724 USA
来源
AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY | 2002年 / 282卷 / 06期
关键词
connexins; electrophysiology; dye permeability;
D O I
10.1152/ajpcell.00484.2001
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
In cells that coexpress connexin (Cx)40 and Cx43, the ratio of expression can vary depending on the cellular environment. We examined the effect of changing Cx40:Cx43 expression ratio on functional gap junction properties. Rin cells transfected with Cx40 or Cx43 (Rin40, Rin43) were cocultured with 6B5n, A7r5, A7r540C1, or A7r540C3 cells for electrophysiological and dye coupling analysis. Cx40: Cx43 expression ratio in 6B5n, A7r5, A7r540C1, and A7r540C3 cells was similar to1:1, 3:1, 5:1, and 10:1, respectively. When Rin43 cells were paired with coexpressing cells, there was an increasing asymmetry of voltage-dependent gating and a shift toward smaller conductance events as Cx40: Cx43 ratio increased in the coexpressing cell. These observations could not be predicted by linear combinations of Cx40 and Cx43 properties in proportion to the expressed ratios of the two Cxs. When Rin40 cells were paired with coexpressing cells, the net voltage gating and single-channel conductance behavior were similar to those of Rin40/Rin40 cell pairs. Dye permeability properties of cell monolayers demonstrated that as Cx40: Cx43 expression ratio increased in coexpressing cells the charge and size selectivity of dye transfer reflected that of Rin40 cells, as would be predicted. These data indicate that the electrophysiological properties of heteromeric/heterotypic channels are not directly related to the proportions of Cx constituents expressed in the cell; however, the dye permeability of these same channels can be predicted by the relative Cx contributions.
引用
收藏
页码:C1469 / C1482
页数:14
相关论文
共 32 条
[1]   Connexin43 gap junctions exhibit asymmetrical gating properties [J].
Banach, K ;
Weingart, R .
PFLUGERS ARCHIV-EUROPEAN JOURNAL OF PHYSIOLOGY, 1996, 431 (05) :775-785
[2]   GAP-JUNCTIONS FORMED BY CONNEXIN-26 AND CONNEXIN-32 ALONE AND IN COMBINATION ARE DIFFERENTLY AFFECTED BY APPLIED VOLTAGE [J].
BARRIO, LC ;
SUCHYNA, T ;
BARGIELLO, T ;
XU, LX ;
ROGINSKI, RS ;
BENNETT, MVL ;
NICHOLSON, BJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1991, 88 (19) :8410-8414
[3]   Monovalent cation permeation through the connexin40 gap junction channel - Cs, Rb, K, Na, Li, TEA, TMA, TBA, and effects of anions Br, Cl, F, acetate, aspartate, glutamate, and NO3 [J].
Beblo, DA ;
Veenstra, RD .
JOURNAL OF GENERAL PHYSIOLOGY, 1997, 109 (04) :509-522
[4]   NBD-TMA: a novel fluorescent substrate of the peritubular organic cation transporter of renal proximal tubules [J].
Bednarczyk, D ;
Mash, EA ;
Aavula, BR ;
Wright, SH .
PFLUGERS ARCHIV-EUROPEAN JOURNAL OF PHYSIOLOGY, 2000, 440 (01) :184-192
[5]   Isoform composition of connexin channels determines selectivity among second messengers and uncharged molecules [J].
Bevans, CG ;
Kordel, M ;
Rhee, SK ;
Harris, AL .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (05) :2808-2816
[6]   Evidence for heteromeric gap junction channels formed from rat connexin43 and human connexin37 [J].
Brink, PR ;
Cronin, K ;
Banach, K ;
Peterson, E ;
Westphale, EM ;
Seul, KH ;
Ramanan, SV ;
Beyer, EC .
AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 1997, 273 (04) :C1386-C1396
[7]   CONNEXIN40, A COMPONENT OF GAP-JUNCTIONS IN VASCULAR ENDOTHELIUM, IS RESTRICTED IN ITS ABILITY TO INTERACT WITH OTHER CONNEXINS [J].
BRUZZONE, R ;
HAEFLIGER, JA ;
GIMLICH, RL ;
PAUL, DL .
MOLECULAR BIOLOGY OF THE CELL, 1993, 4 (01) :7-20
[8]   BIOPHYSICAL PROPERTIES OF GAP JUNCTION CHANNELS FORMED BY MOUSE CONNEXIN40 IN INDUCED PAIRS OF TRANSFECTED HUMAN HELA-CELLS [J].
BUKAUSKAS, FF ;
ELFGANG, C ;
WILLECKE, K ;
WEINGART, R .
BIOPHYSICAL JOURNAL, 1995, 68 (06) :2289-2298
[9]   Alteration of Cx43:Cx40 expression ratio in A7r5 cells [J].
Burt, JM ;
Fletcher, AM ;
Steele, TD ;
Wu, Y ;
Cottrell, GT ;
Kurjiaka, DT .
AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 2001, 280 (03) :C500-C508
[10]  
Cao FL, 1998, J CELL SCI, V111, P31