Impact of sensor's point spread function on land cover characterization: assessment and deconvolution

被引:2
作者
Huang, CQ
Townshend, JRG
Liang, SL
Kalluri, SNV
DeFries, RS
机构
[1] Univ Maryland, Dept Geog, College Pk, MD 20742 USA
[2] Univ Maryland, Inst Adv Comp Studies, College Pk, MD 20742 USA
[3] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA
关键词
D O I
暂无
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Measured and modeled point spread functions (PSF) of sensor systems indicate that a significant portion of the recorded signal of each pixel of a satellite image originates from outside the area represented by that pixel, This hinders the ability to derive surface information from satellite images on a per-pixel basis, In this study. the impact of the PSF of the Moderate Resolution Imaging Spectroradiometer (MODIS) 250 m bands was assessed using four images representing different landscapes. Experimental results showed that though differences between pixels derived with and without PSF effects were small on the average, the PSF generally brightened dark objects and darkened bright objects. This impact of the PSF lowered the performance of a Support vector machine (SVM) classifier by 5.4% in overall accuracy and increased the overall root mean square error (RMSE) by 2.4% in estimating subpixel percent land cover. An inversion method based on the known PSF model reduced the signals originating from surrounding areas by as much as 53%. This method differs from traditional PSF inversion deconvolution methods in that the PSF was adjusted with lower weighting factors for signals originating from neighboring pixels than those specified by the PSF model. By using this deconvolution method, the lost classification accuracy due to residual impact of PSF effects was reduced to only 1.66% in overall accuracy. The increase in the RMSE of estimated subpixel land cover proportions clue to the residual impact of PSF effects was reduced to 0.64%. Spatial aggregation also effectively reduced the errors in estimated land cover proportion images. About 50% of the estimation errors were removed after applying the deconvolution method and aggregating derived proportion images to twice their dimensional pixel size. (C) 2002 Elsevier Science Inc, All rights reserved.
引用
收藏
页码:203 / 212
页数:10
相关论文
共 18 条
[1]  
Barker J.L., 1992, GLOBAL CHANGE ED, V92, P156
[2]   Prelaunch characteristics of the Moderate Resolution Imaging Spectroradiometer (MODIS) on EOS-AM1 [J].
Barnes, WL ;
Pagano, TS ;
Salomonson, VV .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1998, 36 (04) :1088-1100
[3]  
Chambers J.M., 1991, Statistical Models in S
[4]   WIENER RESTORATION OF SAMPLED IMAGE DATA - END-TO-END ANALYSIS [J].
FALES, CL ;
HUCK, FO ;
MCCORMICK, JA ;
PARK, SK .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1988, 5 (03) :300-314
[5]   ESTIMATION OF SPOT P-MODE POINT-SPREAD FUNCTION AND DERIVATION OF A DECONVOLUTION FILTER [J].
FORSTER, BC ;
BEST, P .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 1994, 49 (06) :32-42
[6]   STATISTICAL-MODELS FOR THE IMAGE-RESTORATION PROBLEM [J].
FRIEDEN, BR .
COMPUTER GRAPHICS AND IMAGE PROCESSING, 1980, 12 (01) :40-59
[7]  
HUANG C, 2001, IN PRESS INT J REMOT
[8]  
Joachims T., 1998, Lecture Notes in Computer Science, P137, DOI DOI 10.1007/BFB0026683
[9]  
Kalluri SNV, 1997, INT GEOSCI REMOTE SE, P171, DOI 10.1109/IGARSS.1997.615830
[10]  
Markham B. L., 1986, EOST Landsat Technical notes-1, P3