Transfection of human pancreatic islets with an anti-apoptotic gene (bcl-2) protects β-cells from cytokine-induced destruction

被引:163
作者
Rabinovitch, A [1 ]
Suarez-Pinzon, W
Strynadka, K
Ju, QD
Edelstein, D
Brownlee, M
Korbutt, GS
Rajotte, RV
机构
[1] Univ Alberta, Dept Med, Heritage Med Res Ctr 430, Edmonton, AB T6G 2S2, Canada
[2] Univ Alberta, Dept Pediat, Edmonton, AB T6G 2S2, Canada
[3] Univ Alberta, Dept Surg, Edmonton, AB T6G 2S2, Canada
[4] Albert Einstein Coll Med, Bronx, NY 10467 USA
关键词
D O I
10.2337/diabetes.48.6.1223
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Apoptosis has been identified as a mechanism of pancreatic islet beta-cell death in autoimmune diabetes. Proinflammatory cytokines are candidate mediators of beta-cell death in autoimmune diabetes, and these cytokines can induce beta-cell death by apoptosis, In the present study, we examined whether transfection of human islet beta-cells with an anti-apoptotic gene, bcl-2, can prevent cytokine-induced beta-cell destruction. Human islet beta-cells were transfected by a replication-defective herpes simplex virus (HSV) amplicon vector that expressed the bcl-2 gene (HSVbcl-2) and, as a control, the same HSV vector that expressed a beta-galactosidase reporter gene (HSVlac). Two-color immunohistochemical staining revealed that 95 +/- 3% of beta-cells transfected with HSVbcl-2 expressed Bcl-2 protein compared with 14 +/- 3% of beta-cells transfected with HSVlac and 19 +/- 4% of nontransfected beta-cells. The bcl-2-transfected beta-cells were fully protected from impaired insulin secretion and destruction resulting from incubation for 5 days with the cytokine combination of interleukin (IL)-1 beta, tumor necrosis factor (TNF)-alpha, and interferon (IFN)-gamma, In addition, the bcl-2-transfected islet cells were significantly protected from cytokine-induced lipid peroxidation and DNA fragmentation. These results demonstrate that cytokine-induced beta-cell dysfunction and death involve mechanisms subject to regulation by an anti-apoptotic protein, Bcl-2. Therefore, bcl-2 gene therapy has the potential to protect human beta-cells in pancreatic islets, or islet grafts, from immune-mediated damage in type 1 diabetes.
引用
收藏
页码:1223 / 1229
页数:7
相关论文
共 55 条
[1]   INTERLEUKIN-1 BETA-INDUCED NITRIC-OXIDE PRODUCTION ACTIVATES APOPTOSIS IN PANCREATIC RINM5F CELLS [J].
ANKARCRONA, M ;
DYPBUKT, JM ;
BRUNE, B ;
NICOTERA, P .
EXPERIMENTAL CELL RESEARCH, 1994, 213 (01) :172-177
[2]   Apoptosis and beta-cell destruction in pancreatic islets of NOD mice with spontaneous and cyclophosphamide-accelerated diabetes [J].
Augstein, P ;
Elefanty, AG ;
Allison, J ;
Harrison, LC .
DIABETOLOGIA, 1998, 41 (11) :1381-1388
[3]   Heat shock protein hsp70 overexpression confers resistance against nitric oxide [J].
Bellmann, K ;
Jaattela, M ;
Wissing, D ;
Burkart, V ;
Kolb, H .
FEBS LETTERS, 1996, 391 (1-2) :185-188
[4]   Adenovirus-mediated catalase gene transfer reduces oxidant stress in human, porcine and rat pancreatic islets [J].
Benhamou, PY ;
Moriscot, C ;
Richard, MJ ;
Beatrix, O ;
Badet, L ;
Pattou, F ;
Kerr-Conte, J ;
Chroboczek, J ;
Lemarchand, P ;
Halimi, S .
DIABETOLOGIA, 1998, 41 (09) :1093-1100
[5]   Cell death mediators in autoimmune diabetes - No shortage of suspects [J].
Benoist, C ;
Mathis, D .
CELL, 1997, 89 (01) :1-3
[6]   Communication -: Superoxide in apoptosis -: Mitochondrial generation triggered by cytochrome c loss [J].
Cai, JY ;
Jones, DP .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (19) :11401-11404
[7]   DEVELOPMENTAL CELL-DEATH - MORPHOLOGICAL DIVERSITY AND MULTIPLE MECHANISMS [J].
CLARKE, PGH .
ANATOMY AND EMBRYOLOGY, 1990, 181 (03) :195-213
[8]   Cytokines induce deoxyribonucleic acid strand breaks and apoptosis in human pancreatic islet cells [J].
Delaney, CA ;
Pavlovic, D ;
Hoorens, A ;
Pipeleers, DG ;
Eizirik, DL .
ENDOCRINOLOGY, 1997, 138 (06) :2610-2614
[9]   RAPID COLORIMETRIC ASSAY FOR CELL-GROWTH AND SURVIVAL - MODIFICATIONS TO THE TETRAZOLIUM DYE PROCEDURE GIVING IMPROVED SENSITIVITY AND RELIABILITY [J].
DENIZOT, F ;
LANG, R .
JOURNAL OF IMMUNOLOGICAL METHODS, 1986, 89 (02) :271-277
[10]  
DUKE RC, 1989, CELLULAR BASIS IMMUN, P311