Initial demonstration of in vivo tracing of axonal projections in the macaque brain and comparison with the human brain using diffusion tensor Imaging and fast marching tractography

被引:145
作者
Parker, GJM
Stephan, KE
Barker, GJ
Rowe, JB
MacManus, DG
Wheeler-Kingshott, CAM
Ciccarelli, O
Passingham, RE
Spinks, RL
Lemon, RN
Turner, R
机构
[1] UCL, Inst Neurol, NMR Res Unit, London WC1N 3BG, England
[2] UCL, Inst Neurol, Wellcome Dept Cognit Neurol, London WC1N 3BG, England
[3] UCL, Inst Neurol, Sobell Dept Neurophysiol, London WC1N 3BG, England
[4] Univ Manchester, Manchester M13 9PT, Lancs, England
[5] Univ Dusseldorf, C&O Vogt Brain Res Inst, D-40225 Dusseldorf, Germany
[6] Newcastle Univ, Dept Psychol, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
[7] Univ Oxford, Dept Expt Psychol, Oxford OX1 3UD, England
基金
英国惠康基金;
关键词
diffusion tensor imaging; tractography; macaque; anatomical connectivity;
D O I
10.1006/nimg.2001.0994
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Diffusion tensor imaging (DTI), a magnetic resonance imaging technique, is used to infer major axonal projections in the macaque and human brain. This study investigates the feasibility of using known macaque anatomical connectivity as a "gold-standard" for the evaluation of DTI tractography methods. Connectivity information is determined from the DTI data using fast marching tractography (FMT), a novel tract-tracing (tractography) method. We show for the first time that it is possible to determine, in an entirely noninvasive manner, anatomical connection pathways and maps of an anatomical connectivity metric in the macaque brain using a standard clinical scanner and that these pathways are consistent with known anatomy. Analogous human anatomical connectivity is also presented for the first time using the FMT method, and the results are compared. The current limitations of the methodology and possibilities available for further studies are discussed. (C) 2002 Elsevier Science (USA).
引用
收藏
页码:797 / 809
页数:13
相关论文
共 62 条
[1]   Defining the phenotype of schizophrenia: Cognitive dysmetria and its neural mechanisms [J].
Andreasen, NC ;
Nopoulos, P ;
O'Leary, DS ;
Miller, DD ;
Wassink, T ;
Flaum, L .
BIOLOGICAL PSYCHIATRY, 1999, 46 (07) :908-920
[2]  
[Anonymous], HUMAN NERVOUS SYSTEM
[3]  
APRKER GJM, 2001, LECT NOTES COMPUT SC, V2082, P106
[4]  
ARMAND J, 2001, IN PRESS CEREB CORTE
[5]   Multiple single unit recording in the cortex of monkeys using independently moveable microelectrodes [J].
Baker, SN ;
Philbin, N ;
Spinks, R ;
Pinches, EM ;
Wolpert, DM ;
MacManus, DG ;
Pauluis, Q ;
Lemon, RN .
JOURNAL OF NEUROSCIENCE METHODS, 1999, 94 (01) :5-17
[6]  
Basser PJ, 2000, MAGNET RESON MED, V44, P625, DOI 10.1002/1522-2594(200010)44:4<625::AID-MRM17>3.0.CO
[7]  
2-O
[8]  
Basser PJ, 1996, J MAGN RESON SER B, V111, P209, DOI [10.1006/jmrb.1996.0086, 10.1016/j.jmr.2011.09.022]
[9]   ESTIMATION OF THE EFFECTIVE SELF-DIFFUSION TENSOR FROM THE NMR SPIN-ECHO [J].
BASSER, PJ ;
MATTIELLO, J ;
LEBIHAN, D .
JOURNAL OF MAGNETIC RESONANCE SERIES B, 1994, 103 (03) :247-254
[10]   A theoretical study of the effect of experimental noise on the measurement of anisotropy in diffusion imaging [J].
Bastin, ME ;
Armitage, PA ;
Marshall, I .
MAGNETIC RESONANCE IMAGING, 1998, 16 (07) :773-785