Plasma membrane proton ATPase Pma1p requires raft association for surface delivery in yeast

被引:188
作者
Bagnat, M
Chang, A
Simons, K [1 ]
机构
[1] Max Planck Inst Mol Cell Biol & Genet, D-01307 Dresden, Germany
[2] Yeshiva Univ Albert Einstein Coll Med, Dept Anat & Struct Biol, Bronx, NY 10461 USA
关键词
D O I
10.1091/mbc.12.12.4129
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Correct sorting of proteins is essential to generate and maintain the identity and function of the different cellular compartments. In this study we demonstrate the role of lipid rafts in biosynthetic delivery of Pma1p, the major plasma membrane proton ATPase, to the cell surface. Disruption of rafts led to mistargeting of Pma1p to the vacuole. Conversely, Pma1-7, an ATPase mutant that is mistargeted to the vacuole, was shown to exhibit impaired raft association. One of the previously identified suppressors, multicopy AST1, not only restored surface delivery but also raft association of Pma1-7. Ast1p, which is a peripheral membrane protein, was found to directly interact with Pma1p inducing its clustering into a SDS/Triton X100-resistant oligomer. We suggest that clustering facilitates partition of Pma1p into rafts and transport to the cell surface.
引用
收藏
页码:4129 / 4138
页数:10
相关论文
共 41 条
[1]  
Ambesi A, 2000, J EXP BIOL, V203, P155
[2]   Lipid rafts function in biosynthetic delivery of proteins to the cell surface in yeast [J].
Bagnat, M ;
Keränen, S ;
Shevchenko, A ;
Shevchenko, A ;
Simons, K .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (07) :3254-3259
[3]   HALF-LIFE OF THE PLASMA-MEMBRANE ATPASE AND ITS ACTIVATING SYSTEM IN RESTING YEAST-CELLS [J].
BENITO, B ;
MORENO, E ;
LAGUNAS, R .
BIOCHIMICA ET BIOPHYSICA ACTA, 1991, 1063 (02) :265-268
[4]   A selective transport route from golgi to late endosomes that requires the yeast GGA proteins [J].
Black, MW ;
Pelham, HRB .
JOURNAL OF CELL BIOLOGY, 2000, 151 (03) :587-600
[5]   SORTING OF GPI-ANCHORED PROTEINS TO GLYCOLIPID-ENRICHED MEMBRANE SUBDOMAINS DURING TRANSPORT TO THE APICAL CELL-SURFACE [J].
BROWN, DA ;
ROSE, JK .
CELL, 1992, 68 (03) :533-544
[6]   Vacuole biogenesis in Saccharomyces cerevisiae:: Protein transport pathways to the yeast vacuole [J].
Bryant, NJ ;
Stevens, TH .
MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, 1998, 62 (01) :230-+
[7]   TARGETING OF THE YEAST PLASMA-MEMBRANE [H+]ATPASE - A NOVEL GENE AST1 PREVENTS MISLOCALIZATION OF MUTANT ATPASE TO THE VACUOLE [J].
CHANG, A ;
FINK, GR .
JOURNAL OF CELL BIOLOGY, 1995, 128 (1-2) :39-49
[8]   MATURATION OF THE YEAST PLASMA-MEMBRANE [H+]ATPASE INVOLVES PHOSPHORYLATION DURING INTRACELLULAR-TRANSPORT [J].
CHANG, A ;
SLAYMAN, CW .
JOURNAL OF CELL BIOLOGY, 1991, 115 (02) :289-295
[9]   VIP17/MAL, a lipid raft-associated protein, is involved in apical transport in MDCK cells [J].
Cheong, KH ;
Zacchetti, D ;
Schneeberger, EE ;
Simons, K .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (11) :6241-6248
[10]   Novel Golgi to vacuole delivery pathway in yeast: Identification of a sorting determinant and required transport component [J].
Cowles, CR ;
Snyder, WB ;
Burd, CG ;
Emr, SD .
EMBO JOURNAL, 1997, 16 (10) :2769-2782