Tyrosine phosphorylation of RNA polymerase II carboxyl-terminal domain by the Abl-related gene product

被引:56
作者
Baskaran, R
Chiang, GG
Mysliwiec, T
Kruh, GD
Wang, JYJ
机构
[1] UNIV CALIF SAN DIEGO,DEPT BIOL,LA JOLLA,CA 92093
[2] UNIV CALIF SAN DIEGO,CTR MOL GENET,LA JOLLA,CA 92093
[3] FOX CHASE CANC CTR,DEPT MED ONCOL,PHILADELPHIA,PA 19111
关键词
D O I
10.1074/jbc.272.30.18905
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The largest subunit of RNA polymerase II contains a C-terminal repeated domain (CTD) thai is the site of phosphorylation by serine (threonine) and tyrosine kinases. Phosphorylation of the CTD is correlated with transcription elongation. A number of different kinases have previously been shown to phosphorylate the CTD; among them is a nuclear tyrosine kinase encoded by the c-abl proto-oncogene. The processive and high stoichiometric phosphorylation of RNA polymerase II by c-Abl requires the tyrosine kinase, the SH2 domain, and a CTD-interacting domain (CTD-ID) in the Abl protein. The physiological tyrosine phosphorylation of RNA polymerase II by c-Abl in DNA damage response has previously been demonstrated. Basal tyrosine phosphorylation of RNA polymerase II, however, is observed in cells derived from abl-deficient mice, indicating the existence of other CTD tyrosine kinases. hi this report, we Show that the tyrosine kinase encoded by an Abl-related gene (Arg) also phosphorylates the CTD in vitro and in transfected cells. The SH2 and kinase domain of Arg are 95% identical to that of c-Abl. However, these two proteins Share only 29% identity in the large C-terminal region, Interestingly, a CTD-ID is also found in the C-terminal region of Arg. Mapping studies and sequence analysis have led to the identification of the CTD-that is highly conserved among the divergent C-terminal regions of Abl and Arg. These results indicate that tyrosine phosphorylation of RNA polymerase II CTD could be catalyzed by either c-Abl or Arg kinase.
引用
收藏
页码:18905 / 18909
页数:5
相关论文
共 32 条
[1]   GENETIC-ANALYSIS OF THE REPETITIVE CARBOXYL-TERMINAL DOMAIN OF THE LARGEST SUBUNIT OF MOUSE RNA POLYMERASE-II [J].
BARTOLOMEI, MS ;
HALDEN, NF ;
CULLEN, CR ;
CORDEN, JL .
MOLECULAR AND CELLULAR BIOLOGY, 1988, 8 (01) :330-339
[2]  
Baskaran R, 1996, MOL CELL BIOL, V16, P3361
[3]   Ataxia telangiectasia mutant protein activates c-Abl tyrosine kinase in response to ionizing radiation [J].
Baskaran, R ;
Wood, LD ;
Whitaker, LL ;
Canman, CE ;
Morgan, SE ;
Xu, Y ;
Barlow, C ;
Baltimore, D ;
WynshawBoris, A ;
Kastan, MB ;
Wang, JYJ .
NATURE, 1997, 387 (6632) :516-519
[4]   TYROSINE PHOSPHORYLATION OF MAMMALIAN RNA POLYMERASE-II CARBOXYL-TERMINAL DOMAIN [J].
BASKARAN, R ;
DAHMUS, ME ;
WANG, JYJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (23) :11167-11171
[5]  
CISMOWSKI MJ, 1995, MOL CELL BIOL, V15, P2983
[6]  
CORDEN JL, 1990, TRENDS BIOCHEM SCI, V15, P838
[7]   SRC HOMOLOGY-2 DOMAIN AS A SPECIFICITY DETERMINANT IN THE C-ABL-MEDIATED TYROSINE PHOSPHORYLATION OF THE RNA-POLYMERASE-II CARBOXYL-TERMINAL REPEATED DOMAIN [J].
DUYSTER, J ;
BASKARAN, R ;
WANG, JYJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (05) :1555-1559
[8]   RELATIONSHIP OF CDK-ACTIVATING KINASE AND RNA-POLYMERASE-II CTD KINASE TFIIH/TFIIK [J].
FEAVER, WJ ;
SVEJSTRUP, JQ ;
HENRY, NL ;
KORNBERG, RD .
CELL, 1994, 79 (06) :1103-1109
[9]   C-ABL KINASE REGULATES THE PROTEIN-BINDING ACTIVITY OF C-CRK [J].
FELLER, SM ;
KNUDSEN, B ;
HANAFUSA, H .
EMBO JOURNAL, 1994, 13 (10) :2341-2351
[10]  
KIM WY, 1986, J BIOL CHEM, V261, P14219