Human Ste20 homologue hPAK1 links GTPases to the JNK MAP kinase pathway

被引:210
作者
Brown, JL
Stowers, L
Baer, M
Trejo, J
Coughlin, S
Chant, J
机构
[1] HARVARD UNIV, DEPT MOLEC & CELLULAR BIOL, CAMBRIDGE, MA 02138 USA
[2] UNIV CALIF SAN FRANCISCO, CARDIOVASC RES INST, SAN FRANCISCO, CA 94143 USA
基金
美国国家卫生研究院;
关键词
D O I
10.1016/S0960-9822(02)00546-8
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Background: The Rho-related GTP-binding proteins Cdc42 and Rac1 have been shown to regulate signaling pathways involved in cytoskeletal reorganization and stress-responsive JNK (Jun N-terminal kinase) activation. However, to date, the GTPase targets that mediate these effects have not been identified. PAK defines a growing family of mammalian kinases that are related to yeast Ste20 and are activated in vitro through binding to Cdc42 and Rac1 (PAK: p21 Cdc42-/Rac-activated kinase). Clues to PAK function have come from studies of Ste20, which controls the activity of the yeast mating mitogen-activated protein (MAP) kinase cascade, in response to a heterotrimeric G protein and Cdc42. Results: To initiate studies of mammalian Ste20-related kinases, we identified a novel human PAK isoform, hPAK1. When expressed in yeast, hPAK1 was able to replace Ste20 in the pheromone response pathway. Chemical mutagenesis of a plasmid encoding hPAK1, followed by transformation into yeast, led to the identification of a potent constitutively active hPAK1 with a substitution of a highly conserved amino-acid residue (L107F) in the Cdc42-binding domain. Expression of the hPAK1(L107F) allele in mammalian cells led to specific activation of the Jun N-terminal kinase MAP kinase pathway, but not the mechanistically related extracellular signal-regulated MAP kinase pathway. Conclusions: These results demonstrate that hPAK1 is a GTPase effector controlling a downstream MAP kinase pathway in mammalian cells, as Ste20 does in yeast. Thus, PAK and Ste20 kinases play key parts in linking extracellular signals from membrane components, such as receptor-associated G proteins and Rho-related GTPases, to nuclear responses, such as transcriptional activation.
引用
收藏
页码:598 / 605
页数:8
相关论文
共 43 条
[1]   CDC42 AND CDC43, 2 ADDITIONAL GENES INVOLVED IN BUDDING AND THE ESTABLISHMENT OF CELL POLARITY IN THE YEAST SACCHAROMYCES-CEREVISIAE [J].
ADAMS, AEM ;
JOHNSON, DI ;
LONGNECKER, RM ;
SLOAT, BF ;
PRINGLE, JR .
JOURNAL OF CELL BIOLOGY, 1990, 111 (01) :131-142
[2]   IDENTIFICATION OF A MOUSE P21(CDC42/RAC) ACTIVATED KINASE [J].
BAGRODIA, S ;
TAYLOR, SJ ;
CREASY, CL ;
CHERNOFF, J ;
CERIONE, RA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (39) :22731-22737
[3]  
BAGRODIA S, 1995, J BIOL CHEM, V270, P27995
[4]   SERUM-INDUCED, TPA-INDUCED, AND RAS-INDUCED EXPRESSION FROM AP-1/ETS-DRIVEN PROMOTERS REQUIRES RAF-1 KINASE [J].
BRUDER, JT ;
HEIDECKER, G ;
RAPP, UR .
GENES & DEVELOPMENT, 1992, 6 (04) :545-556
[5]   A YEAST GENE (BEM1) NECESSARY FOR CELL POLARIZATION WHOSE PRODUCT CONTAINS 2 SH3 DOMAINS [J].
CHENEVERT, J ;
CORRADO, K ;
BENDER, A ;
PRINGLE, J ;
HERSKOWITZ, I .
NATURE, 1992, 356 (6364) :77-79
[6]  
CHOI KY, 1994, CELL, V78, P499
[7]   THE SMALL GTP-BINDING PROTEIN-RHO REGULATES A PHOSPHATIDYLINOSITOL 4-PHOSPHATE 5-KINASE IN MAMMALIAN-CELLS [J].
CHONG, LD ;
TRAYNORKAPLAN, A ;
BOKOCH, GM ;
SCHWARTZ, MA .
CELL, 1994, 79 (03) :507-513
[8]   THE SMALL GTP-BINDING PROTEINS RAC1 AND CDC42 REGULATE THE ACTIVITY OF THE JNK/SAPK SIGNALING PATHWAY [J].
COSO, OA ;
CHIARIELLO, M ;
YU, JC ;
TERAMOTO, H ;
CRESPO, P ;
XU, NG ;
MIKI, T ;
GUTKIND, JS .
CELL, 1995, 81 (07) :1137-1146
[9]   STE20-LIKE PROTEIN-KINASES ARE REQUIRED FOR NORMAL LOCALIZATION OF CELL-GROWTH AND FOR CYTOKINESIS IN BUDDING YEAST [J].
CVRCKOVA, F ;
DEVIRGILIO, C ;
MANSER, E ;
PRINGLE, JR ;
NASMYTH, K .
GENES & DEVELOPMENT, 1995, 9 (15) :1817-1830
[10]   JNK1 - A PROTEIN-KINASE STIMULATED BY UV-LIGHT AND HA-RAS THAT BINDS AND PHOSPHORYLATES THE C-JUN ACTIVATION DOMAIN [J].
DERIJARD, B ;
HIBI, M ;
WU, IH ;
BARRETT, T ;
SU, B ;
DENG, TL ;
KARIN, M ;
DAVIS, RJ .
CELL, 1994, 76 (06) :1025-1037