Empirical Bayes analysis of a microarray experiment

被引:1107
作者
Efron, B [1 ]
Tibshirani, R
Storey, JD
Tusher, V
机构
[1] Stanford Univ, Dept Stat, Stanford, CA 94305 USA
[2] Stanford Univ, Div Biostat, Stanford, CA 94305 USA
[3] Stanford Univ, Dept Hlth Res & Policy, Stanford, CA 94305 USA
[4] Stanford Univ, Dept Biochem, Stanford, CA 94305 USA
关键词
D O I
10.1198/016214501753382129
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Microarrays are a novel technology that facilitates the simultaneous measurement of thousands of gene expression levels. A typical microarray experiment can produce millions of data points, raising serious problems of data reduction, and simultaneous inference. We consider one such experiment in which oligonucleotide arrays were employed to assess the genetic effects of ionizing radiation on seven thousand human genes. A simple nonparametric empirical Bayes model is introduced, which is used to guide the efficient reduction of the data to a single summary statistic per gene, and also to make simultaneous inferences concerning which genes were affected by the radiation. Although our focus is on one specific experiment, the proposed methods can be applied quite generally. The empirical Bayes inferences are closely related to the frequentist false discovery rate (FDR) criterion.
引用
收藏
页码:1151 / 1160
页数:10
相关论文
共 13 条
[1]   Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling [J].
Alizadeh, AA ;
Eisen, MB ;
Davis, RE ;
Ma, C ;
Lossos, IS ;
Rosenwald, A ;
Boldrick, JG ;
Sabet, H ;
Tran, T ;
Yu, X ;
Powell, JI ;
Yang, LM ;
Marti, GE ;
Moore, T ;
Hudson, J ;
Lu, LS ;
Lewis, DB ;
Tibshirani, R ;
Sherlock, G ;
Chan, WC ;
Greiner, TC ;
Weisenburger, DD ;
Armitage, JO ;
Warnke, R ;
Levy, R ;
Wilson, W ;
Grever, MR ;
Byrd, JC ;
Botstein, D ;
Brown, PO ;
Staudt, LM .
NATURE, 2000, 403 (6769) :503-511
[2]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[3]  
BLACK M, 2000, CALCULATION MINIMUM
[4]  
DUDOIT S, 2000, STAT METHODS IDENTIF
[5]  
Efron B., 2000, MICROARRAYS THEIR US
[6]   Cluster analysis and display of genome-wide expression patterns [J].
Eisen, MB ;
Spellman, PT ;
Brown, PO ;
Botstein, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (25) :14863-14868
[7]  
KERR K, 2000, IN PRESS P NATL ACAD
[8]   Importance of replication in microarray gene expression studies: Statistical methods and evidence from repetitive cDNA hybridizations [J].
Lee, MLT ;
Kuo, FC ;
Whitmore, GA ;
Sklar, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (18) :9834-9839
[9]  
LI C, 2000, UNPUB MODEL BASED AN
[10]   On differential variability of expression ratios: Improving statistical inference about gene expression changes from microarray data [J].
Newton, MA ;
Kendziorski, CM ;
Richmond, CS ;
Blattner, FR ;
Tsui, KW .
JOURNAL OF COMPUTATIONAL BIOLOGY, 2001, 8 (01) :37-52