微粒群优化算法研究进展

被引:37
作者
刘波
王凌
金以慧
黄德先
机构
[1] 清华大学自动化系
[2] 清华大学自动化系 北京
[3] 北京
关键词
微粒群优化; 多目标优化; 约束优化; 离散优化; 动态优化;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
围绕微粒群优化(PSO)算法的原理、特点、改进、应用等方面进行全面综述,介绍针对复杂环境的PSO研究内容,包括多目标、约束、离散和动态优化等,提出PSO有待进一步研究的若干方向和内容。
引用
收藏
页码:1 / 7
页数:7
相关论文
共 6 条
[1]  
智能优化算法及其应用[M]. 清华大学出版社 , 王凌著, 2001
[2]  
Optimal Trajectory Planning of a Flexible Dual-Arm Space Robot with Vibration Reduction[J] . Hao Wu,Fuchun Sun,Zengqi Sun,Licheng Wu.Journal of Intelligent and Robotic Systems . 2004 (2)
[3]   Location and imaging of two-dimensional scatterers by using a particle swarm algorithm [J].
Caorsi, S ;
Donelli, M ;
Lommi, A ;
Massa, A .
JOURNAL OF ELECTROMAGNETIC WAVES AND APPLICATIONS, 2004, 18 (04) :481-494
[4]   Solving Unit Commitment problem using Hybrid Particle Swarm Optimization [J].
Ting, TO ;
Rao, MVC ;
Loo, CK ;
Ngu, SS .
JOURNAL OF HEURISTICS, 2003, 9 (06) :507-520
[5]  
Comparing Inertia W eights and Constriction Factors in Particle Swarm Optim ization .2 Eberhart R C,Shi Y. Proceedings of the Congress on Evolutionary Computation . 2000
[6]  
A Modified Particle Swarm Optimizer .2 Shi Y,Eberhart RC. Proceedings of the IEEE International Conference on Evolutionary Computation . 1998