求解高校教室调度问题的混合粒子群算法

被引:4
作者
曹策俊 [1 ]
杨琴 [2 ]
李从东 [1 ]
机构
[1] 暨南大学管理学院
[2] 四川师范大学商学院
关键词
高校教室调度; 三元组; 并行机调度; 运筹学模型; 混合粒子群算法;
D O I
暂无
中图分类号
TP301.6 [算法理论];
学科分类号
081202 ;
摘要
针对高校教室调度问题进行了研究,综合考虑教室集中时间利用率和学生需求,采用三元组方式,用任务表示课程,用设备表示不同类型的教室。据此,教室排课问题被描述为一类以最小化Cmax与滞后时间和为调度目标,具有机器适用限制的并行机调度问题。然后结合问题特性,建立对应的运筹学调度模型,并运用混合粒子群算法求解该类调度问题。最后仿真结果表明实现了所讨论的两个优化调度目标,获得了满意解;同时通过与其他算法解的比较,得出混合粒子群算法非常适合求解这里所讨论的教室排课问题这一结论。
引用
收藏
页码:4451 / 4454
页数:4
相关论文
共 19 条
[1]  
Setting the researchagenda in automated timetabling:the second international timetablingcompetion. McCOLLUM B,SCHAERF A,PAECHER B,et al. Informs Journal on Computing . 2000
[2]  
Adaptive tabu search for course timeta-bling. LU Zhi-peng,HAO Jin-kao. European Journal of Operational Research . 2010
[3]  
Parallel machine scheduling with machine availability and eligibility constraints. Liao L W,Sheen G J. European Journal of Operational Research . 2008
[4]  
Lower bounds for the earliness–tardiness scheduling problem on parallel machines with distinct due dates. S Kedad-Sidhoum,YR Solis,F Sourd. European Journal of Operational Research . 2008
[5]  
Decomposition, reformulation, and diving in university course timetabling. E.K. Burke,J. Marecek,A. Parkes,H. Rudová. Computers and Operations Research . 2009
[6]  
Scheduling: theory, algorithms and systems. Pinedo M. . 2002
[7]  
Tabu search for a class of scheduling problems[J] . Edward L. Mooney,Ronald L. Rardin. &nbspAnnals of Operations Research . 1993 (3)
[8]   A hybrid metaheuristic approach to the university course timetabling problem [J].
Abdullah, Salwani ;
Turabieh, Hamza ;
McCollum, Barry ;
McMullan, Paul .
JOURNAL OF HEURISTICS, 2012, 18 (01) :1-23
[9]   Resource assignment in high school timetabling [J].
Kingston, Jeffrey H. .
ANNALS OF OPERATIONS RESEARCH, 2012, 194 (01) :241-254
[10]  
综合教务管理系统研究与设计[D]. 李振江.哈尔滨工程大学 2009