一种实用的软件数据挖掘模型

被引:5
作者
尹云飞
张师超
徐章艳
机构
[1] 广西师范大学计算机科学系,广西师范大学计算机科学系,广西师范大学计算机科学系广西桂林,广西桂林,广西桂林
关键词
软件工程; 数据挖掘; 部分重复性; 完全重复性; 软件代价;
D O I
暂无
中图分类号
TP311.5 [软件工程];
学科分类号
081202 ; 0835 ;
摘要
文中提出了一种将数据挖掘应用于软件工程学中的模型,数据挖掘是一个涉及多领域的交叉学科,它拥有许多成熟的技术。其中,基于"部分重复性"理论的挖掘方法便是数据挖掘的重要技术之一。在对复杂数据的处理过程中,"部分重复性"理论通过建立"中心函数"、"浮动域"和"正确度"指标,提供了一种分类优劣的评价标准。与传统方法相比较,这种方法更加直观、更加高效、更加易于实现,而且能够发现有价值的知识模式。
引用
收藏
页码:60 / 62
页数:3
相关论文
共 9 条
[1]  
Learning with Many Irrelevant Features. Almullim H,Dietterich TG. 9th National Conf. On artificial Intelligence[C], July . 1991
[2]  
Mining Association Rules Between Sets of Items in Large Databases. Agrawal R,Imielinski T,Swami A. ACM SIGMOD Issues . 1993
[3]  
Mining fuzzy association rules in databases. Kuok CM,Fu AWC,Wong MH. SIGMOD Record . 1998
[4]  
MultiMediaMiner: A System Prototype for Multimedia Data Mining. Zaiane OR,Han J,Li Z-N,et al. Proceedings ACM SIGMOD International Conference on Management of Data . 1998
[5]  
Discovering Causality in Large Databases. Zhang Shichao,Zhang Chengqi. Applied Artificial Intelligence . 2002
[6]  
Prediction Method for Normal Association Rules. Lu JJ,Song ZL,Yuan Z. 16th World Computer Congress 2000, Conference on Intelligent Information Processing[C], China Beijing . 2000
[7]  
Analyzing software science data with partial repeatability. Cai KY,Chen L. The Journal of Systems and Software . 2002
[8]  
Efficient Mining of Partial Periodic Patterns in Time Series Database. Han J,Dong G,Yin Y. Proceedings of the 15th International Conference on Data Engineering . 1999
[9]  
Mining Temporal Relationships with Multiple Granularities in Time Sequences. Bettini C,Wang XS,Jajodia S. IEEE Data Engineering Bulletin . 1998