基于语义相似性的资源协同过滤技术研究

被引:8
作者
崔林
宋瀚涛
陆玉昌
机构
[1] 北京理工大学信息科学技术学院计算机科学工程系,北京理工大学信息科学技术学院计算机科学工程系,清华大学计算机科学与技术系北京 中央广播电视大学理工部北京 ,北京 ,北京
关键词
个性化; 推荐系统; 协同过滤; 基于资源CF; 语义相似性;
D O I
10.15918/j.tbit1001-0645.2005.05.007
中图分类号
TP393 [计算机网络];
学科分类号
081201 ; 1201 ;
摘要
为解决协同过滤推荐系统中所存在的可扩展性、稀疏性等问题带来的推荐性能下降,提出新的基于资源语义知识协同过滤算法,算法综合考虑了资源语义和用户评价的影响,改善基于资源协同过滤算法性能.实验表明,基于资源语义的协同过滤算法相对于传统协同过滤算法可提高推荐性能.
引用
收藏
页码:402 / 405
页数:4
相关论文
共 9 条
[1]  
Determining se-mantic similarity among entity classes from different ontolo-gies. RODRIGUEZ M A,EGENHOFER M J. IEEE transactions on knowledge and data engineer-ing . 2003
[2]  
Exploiting hierarchical domain structure to compute similarity. Ganesan P,Garcia-Molina H,Widom J. ACM Transactions on Information Systems . 2003
[3]  
Item-based collaborative filtering recommendation algorithms. Sarwar B,Karypis G,Konstan J,et al. Proceedings of the 10th International WWW Conference . 2001
[4]  
Analysis of recommender algorithms for e-commerce. Sarwar B M,Karypis G,Konstan J,et al. Proceedings of the 2nd ACM E-Commerce Conference . 2000
[5]  
Buildingrecommendersystemsusingaknowledgebaseofproductsemantics. GhaniR,FanoA. http:∥www.accenture.com/xdoc/en/services/technology/publications/recommender-ws02.pdf . 2004
[6]  
An algorithmic framework for performing collaborative filtering. Herlocker J,Konstan J,Borchers A,et al. Proceedings of the 1999 Conference on Research and Development in Information Retrieval . 1999
[7]  
GroupLens applying collaborative filtering to usenet news. Konstan, J,Miller, B,Maltz, D. et al. Communications of the ACM . 1997
[8]  
Item-based top N recommendation algorithm. Deshpande M,Karypis G. ACM Transactions on Information Systems . 2004
[9]  
Uniform techniques for deriving similarities of objects and subschemes in heterogeneous databases. Palopoli L,Sacca D,Terracina G,et al. IEEE Transactions on Knowledge and Data Engineering . 2003