U-Net:用于包含无答案问题的机器阅读理解的轻量级模型

被引:3
作者
孙付 [1 ]
李林阳 [1 ]
邱锡鹏 [1 ]
刘扬 [2 ]
黄萱菁 [1 ]
机构
[1] 复旦大学计算机学院
[2] 流利说硅谷人工智能实验室
关键词
机器阅读理解; SQuAD; 注意力机制;
D O I
暂无
中图分类号
TP391.1 [文字信息处理];
学科分类号
081203 ; 0835 ;
摘要
处理机器阅读理解任务时,识别其中没有答案的问题是自然语言处理领域的一个新的挑战。该文提出U-Net模型来处理这个问题,该模型包括3个主要成分:答案预测模块、无答案判别模块和答案验证模块。该模型用一个U节点将问题和文章拼接为一个连续的文本序列,该U节点同时编码问题和文章的信息,在判断问题是否有答案时起到重要作用,同时对于精简U-Net的结构也有重要作用。与基于预训练的BERT不同,U-Net的U节点的信息获取方式更多样,并且不需要巨大的计算资源就能有效地完成机器阅读理解任务。在SQuAD 2.0中,U-Net的单模型F1得分72.6、EM得分69.3,U-Net的集成模型F1得分74.9、EM得分71.4,均为公开的非基于大规模预训练语言模型的模型结果的第一名。
引用
收藏
页码:99 / 106
页数:8
相关论文
共 14 条
[1]  
Bidirectional attention flow for machine comprehension . Seo Minjoon,Kembhavi Aniruddha,Farhadi Ali,et al. Proceedings of the International Conference on Learning Representations . 2015
[2]  
Read + Verify: Machine Reading Comprehension with Unanswerable Questions[J] . Minghao Hu,Furu Wei,Yuxing Peng,Zhen Huang,Nan Yang,Dongsheng Li. roceedings of the AAAI Conference on Artificial Intelligence . 2019
[3]  
Machine Comprehension Using Match-LSTM and Answer Pointer[J] . Shuohang Wang,Jing Jiang. oRR . 2016
[4]  
Dropout: a simple way to prevent neural networks from overfitting[J] . Nitish Srivastava,Geoffrey E. Hinton,Alex Krizhevsky,Ilya Sutskever,Ruslan Salakhutdinov. ournal of Machine Learning Research . 2014 (1)
[5]   Long short-term memory [J].
Hochreiter, S ;
Schmidhuber, J .
NEURAL COMPUTATION, 1997, 9 (08) :1735-1780
[6]  
FusionNet:Fusing via fully-aware attention with application to machine comprehension . Hsin-Yuan Huang,Chenguang Zhu,Yelong Shen,et al. . 2018
[7]  
QANet:Combining local convolution with global self-attention for reading comprehension . Adams Wei Yu,David Dohan,Minh Thang Luong,et al. Proceedings of the International Conference on Learning Representations . 2018
[8]  
BERT:Pre-training ofdeep bidirectional transformers for Language Understanding . Jacob Devlin,Mingwei Chang,Kenton Lee,et al. Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics . 2019
[9]  
Stochastic answer networks for machine reading comprehension . Xiaodong Liu,Yelong Shen,Kevin Duh,et al. Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics . 2018
[10]  
Reinforced mnemonic reader for machine reading comprehension . Minghao Hu,Yuxing Peng,Zhen Huang,et al. Proceedings of the 27th International Joint Conference on Artificial Intelligence . 2018