应用小波熵分析大鼠脑电信号的动态变化特性

被引:29
作者
封洲燕
机构
[1] 浙江大学生命科学学院浙江杭州
关键词
小波熵; 脑电; 谱熵; 慢波睡眠;
D O I
暂无
中图分类号
Q42 [神经生理学];
学科分类号
071006 ;
摘要
应用小波熵(一种新的信号复杂度测量方法)分析大鼠在不同生理状态下脑电复杂度的动态时变特性。采用慢性埋植电极记录自由活动大鼠的皮层EEG,使用多分辨率小波变换将EEG信号分解为啄、兹、琢和茁四个分量,求得随时间变化的小波熵。结果表明:在清醒、慢波睡眠和快动眼睡眠三种生理状态下,EEG的小波熵之间存在显著差别,并且在不同时期其值与各个分解分量之间具有不同的关系,其中,慢波睡眠期小波熵还具有较明显的变化节律,反映了EEG微状态中慢波和纺锤波的互补性。由此可见,小波熵既能区别长时间段EEG复杂度之间的差别,又能反映EEG微状态的快速变化特性。
引用
收藏
页码:325 / 330
页数:6
相关论文
共 17 条
[1]  
EEG power densities(0.5-20Hz) in different sleep-wake stages in rats. BjorvatnB,FagerlandS,UrsinR. Physiol&Behav . 1998
[2]  
A theory for multiresolution signal decomposition: the wavelet representation. MallatSG. IEEETransactiononPatternAnalysisandMachineIntelligence . 1989
[3]  
Quantification ofEEG irregularity by use of the entropy of the power spectrum. InouyeT,ShinosakiK,SakamotoH,et al. ElectroencephalographyandClinicalNeurophysiol-ogy . 1991
[4]  
Non-stationary analysis of ex-tracellular neural activity. LiD,MagnusonDSK,JungR. Neurocomputing . 2000
[5]  
Influence of aGABAB receptor antagonist on the sleep-waking cycle in the rat. GauthierP,ArnaudC,GandolfoG,et al. Brain Research Bulletin . 1997
[6]  
Spectral analysis methods for neurological signals. MuthuswamyJ,ThakorNV. JNeurosciMeth . 1998
[7]  
StochasticComplexityMeasures forPhysiologicalSignalAnalysis. RezekIA,RobertsSJ. IEEETransBiomedEngin . 1998
[8]  
Algorithmic complexity as an index of cortical function in awake and pentobarbi-tal-anesthetized rats. ShawFZ,ChenRF,TsaoHW,et al. JNeurosciMeth . 1999
[9]  
The largestLyapunov exponent of theEEG duringECT seizures as a measure ofECT seizure adequacy. KrystalAD,ZaidmanC,GreensideHS,et al. ElectroencephalographyandClinicalNeurophysiology . 1997
[10]  
Wavelet entropy: a new tool for analysis of short duration brain electrical sig-nals. RossoOA,BlancoS,YordanovaJ,et al. JNeurosciMeth . 2001